
Math 3204: Calculus IV1 Mikhail Lavrov

Lecture 12: A tricky vector field

September 19, 2024 Kennesaw State University

1 Differential forms

We think of the circulation and flux integrals as integrals of vector fields. However, we can also
think of them as integrals of differential forms, via the definition∫

C
M(x, y) dx+N(x, y) dy =

∫ b

t=a

(
M(x(t), y(t))

dx

dt
+N(x(t), y(t))

dy

dt

)
dt

(where C is parameterized as (x(t), y(t)) for t ∈ [a, b]). From this point of view, flux and circulation
integrals are the same object. For example, the circulation integral of ex+y i +

√
x2 + y2 j around

C and the flux integral of
√

x2 + y2 i− ex+y j across C are actually the same integral,∫
C
ex+y dx+

√
x2 + y2 dy =

∫
C

√
x2 + y2 dy − (−ex+y) dx.

Now let’s talk about how gradient fields and the component test interact with differential forms.
Today, we will mostly focus on examples in R2, but all of this generalizes to R3 and even beyond,
to Rn.

1.1 Exact differential forms

For a differentiable function f : R2 → R, we define df to be the differential form ∂f
∂x dx + ∂f

∂y dy:

the differential equivalent of the gradient ∇f = ∂f
∂x i+ ∂f

∂y j. We’ve already seen that in this form,
the fundamental theorem of line integrals has a particularly clean statement. It states that when
curve C starts at point a and ends at point b,∫

C
df = f(b)− f(a).

A differential form M dx + N dy is called exact if M dx + N dy = df for some f . Sorry, this
is yet another term alongside “conservative” and “gradient” and “path-independent” for approx-
imately the same concept. We won’t use it much apart from today, but you might encounter it
elsewhere.

Anyway, exact differential forms are useful because their integrals are path-independent, and their
integrals along a closed curve are always equal to 0.

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/

3204-fall-2024
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1.2 Closed differential forms

We can also define the derivative (formally, the exterior derivative) of a differential form. This
is defined by the rule

d(M dx+N dy) = dM ∧ dx+ dN ∧ dy,

in terms of wedge products, which we briefly saw earlier.2 We simplify this wedge product by the
rules that dy ∧ dx = −(dx ∧ dy) and dx ∧ dx = dy ∧ dy = 0. So, for example,

d(x2y dx+ ex−y dy) = (2xy dx+ x2 dy) ∧ dx+ (ex−y dx− ex−y dy) ∧ dy

= 2xy · 0 + x2 dy ∧ dx+ ex−y dx ∧ dy − ex−y · 0
= (−x2 + ex−y) dx ∧ dy.

(This multiple of dx∧dy is also a differential form, but a differential form of degree 2, rather than
1. We could integrate it over a 2-dimensional region, rather than a 1-dimensional region.)

In general, we end up with the identity

d(M dx+N dy) =

(
∂N

∂x
− ∂M

∂y

)
dx ∧ dy.

Why is this important to us right now? Because the component test says that if a vector field
M i+N j is a gradient field, then ∂N

∂x = ∂M
∂y ; in other words, d(M dx+N dy) = 0. In the language

of differential forms: if M dx+N dy is exact, then d(M dx+N dy) = 0.

We call a differential form ϕ closed if dϕ = 0. That is, another way to phrase the component test
is “all exact differential forms are closed”.

Are all closed differential forms exact? In other words, does the component test guarantee that a
vector field is conservative? This is the question we will investigate today.

2 The dθ differential form

In polar coordinates, we have x = r cos θ and y = r sin θ. We also often write the identity r =√
x2 + y2. We rarely write θ in terms of x and y, and that’s because doing so is a bit awkward.

Dividing y by x, we get y
x = sin θ

cos θ = tan θ. It is not precisely true that θ = arctan y
x : this fails

to distinguish the point (x, y) from the point (−x,−y), which have the same value of y
x but have

angles that differ by π. Usually, θ ranges from 0 to 2π, but the output of arctan is taken to lie
between −π

2 and π
2 . Therefore it’s valid to say that θ = arctan y

x in the first quadrant; outside that
range, we should add or subtract a constant.

But derivatives don’t care about that constant, so we can take the derivatives

∂θ

∂x
=

1

1 + (y/x)2
· − y

x2
=

−y

x2 + y2
,

∂θ

∂y
=

1

1 + (y/x)2
· 1
x
=

x

x2 + y2

and have these be valid for any value of θ. Today, we will look closely at the vector field

F =
−y

x2 + y2
i+

x

x2 + y2
j =

−y i+ x j

x2 + y2
.

2In R3, we define d(M dx+N dy + P dz) as dM ∧ dx+ dN ∧ dy + dP ∧ dz, continuing the pattern.
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This corresponds to the differential form dθ = −y
x2+y2

dx+ x
x2+y2

dy.

Does F pass the component test? In other words, is dθ closed? You will not be surprised to learn
that the answer is yes. Explicitly,

∂

∂y

(
− y

x2 + y2

)
=

y2 − x2

(x2 + y2)2
=

∂

∂x

(
x

x2 + y2

)
.

Is the vector field F conservative? In other words, is dθ exact? This seems like a silly question.
Conservative fields are gradient fields, and F is the gradient of θ(x, y). Exact differential forms are
those we can write as df for some function f , and dθ looks like it’s already written that way.

The problem is that θ is not exactly a function. Or at least, it’s not a continuous function. If
you have θ range from 0 to 2π, then as you go around the unit circle counterclockwise, θ will keep
increasing and increasing until it suddenly drops back down to 0. It will be continuous everywhere
except for the ray {(x, 0) : x ≥ 0}. We can move the cutoff point if we like, but θ will always have
a discontinuity along our cutoff point, and it will never be continuous at (0, 0).

The answer to whether F is conservative, or whether dθ is exact is: it depends on the do-
main.

For example, let D be the set R2\{(x, 0) : x ≥ 0}: all points in the plane, except for the nonnegative
x-axis. On this domain, we can define a continuous function θ(x, y) which is always between 0 and
2π, and then we will have F = ∇θ. On this domain, we can define a path C in the shape of the
letter C: the path parameterized by r(t) = (cos t, sin t), where t ∈ [0.01, 6.28]. What will we get
when we integrate ∫

C
F · dr =

∫
C
dθ?

By the fundamental theorem of line integrals, it will be θ(r(6.28))− θ(r(0.01)), which simplifies to
6.28− 0.01 = 6.27. For all curves inside this set D, integrating F will behave as nicely as we want.
For example, for any other curve C ′ that begins at (cos 0.01, sin 0.01) and ends at (cos 6.28, sin 6.28),
the integral of F along C ′ will also be 6.27. If we take a closed loop entirely contained in the domain
D, the integral of F around that loop will be 0.

But now, let C be the entire unit circle: a curve that’s not contained in D (because it passes
through the point (1, 0) /∈ D). What will ∫

C
F · dr

be? Well, our previous curve had almost the same endpoints, and had an integral of almost 2π, so
you probably won’t be surprised to get an answer of exactly 2π here. We can do it the hard way,
as well: ∫

C
F · dr =

∫
C

−y

x2 + y2
dx+

x

x2 + y2
dy

=

∫ 2π

t=0

(
− sin t

cos2 t+ sin2 t
(− sin t) +

cos t

cos2 t+ sin2 t
(cos t)

)
dt

=

∫ 2π

t=0

(
(− sin t)2 + (cos t)2

cos2 t+ sin2 t

)
dt =

∫ 2π

t=0
1 dt = 2π.
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This is the integral of F around a closed loop, and it’s not 0. Similarly, we can find an example
where F fails to be path-independent. Go from (1, 0) to (−1, 0) around the top half of the unit
circle, and you get π, but go from (1, 0) to (−1, 0) around the bottom of the unit circle, and you
get −π.

Therefore, on the domain R2 \ {(0, 0)} (the biggest domain where we can define F: at (0, 0), we’d
be dividing by 0) the vector field F is not conservative, and dθ is not exact.

3 Integrating around undefined points

Do we constantly have to be worried, when we’re dealing with vector fields that “look” conservative,
that they’ll misbehave in the same way?

For the most part, the answer is no. If a vector field is defined on all of R2 (or in general, on all of
Rn), and it passes the component test, then it is in fact conservative. In other words, a differential
form defined on all of Rn is exact if and only if it is closed.

A general condition is the following:

Theorem 3.1. Let D ⊆ Rn be an open, simply connected domain: informally, D does not
include its boundary, and has no holes in it. Let F be a vector field defined on all of D.

Then F is conservative, and is equal to ∇f for some function f : D → R, if and only if it passes
the component test.

In other words: if D is open and simply connected, then a differential form defined on D is exact
if and only if it is closed. (But we may only use this result when integrating over curves contained
entirely in D.)

The troubling thing about F = −y
x2+y2

i+ x
x2+y2

j is that the point (0, 0) was causing us trouble even

when integrating along a curve that didn’t get close to (0, 0). Somehow, our line integral sensed
that the undefined point was lurking inside the curve, and decided to misbehave!

3.1 Partial potential functions

The vector field F = −y
x2+y2

i+ x
x2+y2

j (corresponding to the differential form dθ) still has some very
nice features even though it’s not conservative. By the component test, it has a potential function on
every open, simply connected domain not containing (0, 0)—it’s just that these potential functions
may not all agree. We also know what those potential functions are: they are various possible
measurements of the angle θ.

So suppose I give you some wonky closed curve around (0, 0), such as the one in Figure 1a. Can
we use our knowledge to integrate F around this path?

What we can do—what we can always do—is break up our closed loop into two segments. Let’s
let point a be the point where our loop crosses the positive x-axis, and let b be the point where it
crosses the negative x-axis. We first integrate along the top half, from a to b, and then along the
bottom half, from b back to a.
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(a) A closed loop around (0, 0)
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(b) The top half of the loop

x

y
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(c) The bottom half of the loop

Figure 1: Integrating F = −y
x2+y2

i+ x
x2+y2

j in a closed loop around (0, 0)

What can we do for the first loop (shown in Figure 1b)? Well, let θ1(x, y) be the counterclockwise
angle that the vector from (0, 0) to (x, y) makes with the negative y-axis. This is a weird choice,
but it’s equal to our usual θ coordinate up to a constant, so dθ1 will be the same as dθ anywhere
they’re both defined. Also, if we let D1 = R2 \{(0, y) : y ≤ 0} (excluding the negative y-axis itself),
then θ1 is a continuous potential function for F on the domain D1.

Therefore, by the fundamental theorem of line integrals, the integral of F along the segment of our
curve from a to b is given by θ1(b)− θ1(a), which is 3π

2 − π
2 = π.

For the second loop (shown in Figure 1c), we do almost the same thing, but we define θ2(x, y) to be
the counterclockwise angle with the positive y-axis. Then θ2 is a continuous potential function for
F on the domain D2 = R2 \ {(0, y) : y > 0}, and the bottom half of our curve is contained entirely
inside D2. The integral along the segment of our curve from b back to a is given by θ2(a)− θ2(b),
which is also 3π

2 − π
2 = π.

Therefore the integral going all the way around the origin is still π + π = 2π, even for this weird
curve.

3.2 The gravity field

Newton’s law of universal gravitation states a mass of M at the origin pulls on an object at (x, y)
of mass m with the force

F = − GmM

(x2 + y2)3/2
(x i+ y j).

Here, G, m, and M are constants, and we’re mathematicians, so from now on let’s just choose our
units (or our objects) so that GmM = 1.

(Formally, we should be doing this in three dimensions, but that’s not harder, it’s just more time-
consuming. Also, you may be surprised by the exponent of 3/2. Here’s, the explanation: the mag-
nitude ∥F∥ is GmM

x2+y2
= GmM

r2
, it’s just that the direction is given by the unit vector − x i+y j√

x2+y2
.)

This force field is also undefined at (0, 0): we’re also dividing by 0 there. So should we be just as
worried about what’s going on over here?
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One answer is that we’re safe as soon as we find a potential function. Here, the vector field

F = − x i+ y j

(x2 + y2)3/2

has potential function f(x, y) = 1√
x2+y2

.

This is still undefined at (0, 0), but it is defined and continuous everywhere else, unlike θ(x, y). So
we are allowed to use it whenever we’re integrating along a curve that doesn’t actually pass through
the origin. (And if our curve does pass through the origin, we have bigger problems.)

Suppose, however, that for whatever reason, finding a potential function is beyond us. It involves
taking antiderivatives, after all; sometimes those are hard. We can check that F passes the compo-
nent test, but we’ve learned the hard way that with an undefined point at (0, 0), integrating around
(0, 0) could still go wrong.

Well, if F passes the component test, we know that it’s conservative on open, simply connected
domains where it is defined. How can we make use of this?

To begin with, what this means is that for two curves C1 and C2 with the same endpoints, path
independence holds as long as the space between C1 and C2 does not contain (0, 0), where F is
undefined. Another way to put it is that we have path independence if you can imagine deforming
C1 to turn it into C2, without any intermediate steps that pass through the origin.

We can deal with the origin by a single “test integral”. Suppose we integrate F around the unit
circle: the set of points where x2 + y2 = 1. If C is the unit circle, we can say that∫

C
F · dr =

∫
C
F ·T ds = 0

because F · T = 0 at every point of the unit circle: the force F always points towards the origin,
perpendicular to the tangent vector.

If a single closed curve around the undefined point integrates to 0, then all of them must integrate
to 0, when we’re dealing with a conservative vector field like F. Essentially, you can deform any
closed curve around (0, 0) into the unit circle. Then, path independence on some simply connected
regions not containing (0, 0) will guarantee that we haven’t changed the integral while doing this
deformation.
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