
Math 3204: Calculus IV1 Mikhail Lavrov

Lecture 15: Examples and applications of Green’s theorem

(canceled) Kennesaw State University

1 Area bounded by a curve

Though we often apply Green’s theorem to turn a complicated line integral into a simple double
integral, we can sometimes go in the other direction.

The most common example of this is for computing area. The area of a region R is given by the
double integral

∫∫
R dA. But if R is difficult to integrate over, and its boundary is easy to integrate

over, then we might want to use Green’s theorem.

Okay, but how? In order for Green’s theorem to apply, we need a vector field F such that curlF = 1.
Then, if C is the counterclockwise boundary of R, we conclude that∫

C
F · dr =

∫∫
R
curlF dA =

∫∫
R
dA,

which is the area of R.

There are many choices for F. A simple one to use is the vector field x j (that is, 0 i + x j). It
is not unique even among linear vector fields: −y i, or −y i+x j

2 , or ay i + bx j for any a, b with
b− a = 1, will all work. And we can further add on any conservative vector field of our choice: for
example, we can take the vector field cos y i+ x(1− sin y) j, which adds x j to the gradient field of
f(x, y) = x cos y.

However, part of our plan is to take a line integral of F around C, so usually something simple is
the way to go.

For our first example, let’s find a formula for the area enclosed by the ellipse with equation

x2

a2
+

y2

b2
= 1.

There are many approaches to finding a formula like this, including linear algebra and uv-substitutions.
But we’ll use Green’s theorem.

The boundary of the ellipse can be given the counterclockwise parameterization

r(t) = (a cos t, b sin t), t ∈ [0, 2π].

We will choose F = −1
2y i+

1
2x j, because I happen to know ahead of time that this will give us a

nice integral.

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/

3204-fall-2024
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As usual, we compute F(r(t)) = −1
2b sin t i +

1
2a cos t j,

dr
dt = (−a sin t, b cos t), and then take their

dot product, getting

F(r(t)) · dr
dt

=
1

2
ab sin2 t+

1

2
ab cos2 t =

1

2
ab.

So the area of the ellipse is ∫ 2π

t=0

1

2
abdt =

1

2
ab · 2π = πab.

Here’s a second neat application. Suppose that we have a k-sided polygon whose corners have
coordinates (x1, y1), (x2, y2), . . . , (xk, yk), in counterclockwise order around the polygon. We can
use this to compute the area!

Once again, we will use F = −1
2y i +

1
2x j. Actually, to make life easier, let’s use F = −y i + x j

(which has curlF = 2) and divide by 2 at the end. We parameterize the segment from (xi, yi) to
(xi+1, yi+1) by

r(t) = ((1− t)xi + txi+1, (1− t)yi + tyi+1), t ∈ [0, 1].

We get F(r(t)) = (−yi + tyi − tyi+1) i + (xi − txi + txi+1) j and
dr
dt = (xi+1 − xi) i + (yi+1 − yi) j.

When we take the dot product, many terms cancel: for example, (tyi)(−xi) from the i-components
cancels with (−txi)(−yi) from the j-components. In fact, the only terms that don’t cancel are the
ones that don’t depend on t: the product simplifies to xiyi+1 − xi+1yi.

Integrating this as t goes from 0 to 1 does nothing. Adding this up over all line segments, then
dividing by 2, gives us the formula

A =
x1y2 − x2y1 + x2y3 − x3y2 + · · ·+ xk−1yk − xkyk−1 + xky1 − x1yk

2
.

This is called the “shoelace formula”, from a diagram that represents the products we take:

x1 x2 x3 · · · xk−1 xk x1

y1 y2 y3 · · · yk−1 yk y1

+

+−

− +

+−

− +

+−

− +

+−

− +

+−

− +

+−

−

The red lines with +’s on them are the products that have a positive sign; the blue lines with −’s
on them are the products that have a negative sign; together, the lines resemble a shoelace pat-
tern.

2 Regions with holes in them

Let R be the region bounded between the circle of radius 1 and the circle of radius 2 centered at
(0, 0); in other words,

R = {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}.

Let F = x3 i + y3 j, and for the sake of variety, let’s look at the flux and divergence version of
Green’s theorem.
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We can integrate ∫∫
R
divFdA =

∫∫
R
3(x2 + y2) dA

by rewriting the integral in polar coordinates: replacing 3(x2 + y2) by 3r2, dA by r dr dθ, and the
bounds on our region by 1 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π. The result is∫ 2π

θ=0

∫ 2

r=1
3r3 dr dθ = 2π · 3r

4

4

∣∣∣∣2
r=1

= 2π

(
3 · 16
4

− 3 · 1
4

)
=

45π

2
.

What does this integral represent. Green’s theorem does not directly apply to this region, because
it is not simply connected. Nevertheless, the double integral of divF over R does give us the
outward flux across the boundary of R—just in a more complicated way.

The region R has two boundaries: the circle C1 of radius 1, and the circle C2 of radius 2. If we
want to look at the flux out of R, then this will be the combination of the outward flux integral
across C2 and the inward flux integral across C1: if we leave the region R by crossing C1, this is
C1’s inward direction! This suggests that∫∫

R
divFdA =

∫
C2

F · nds−
∫
C1

F · nds. (1)

Here, we continue to orient both C1 and C2 counterclockwise, and follow all sign conventions for
flux, but we subtract the integral over C1 rather than adding it to obtain an inward flux.

Equation (1) is, indeed, true, and there are two ways to prove it from Green’s theorem.

• Divide the region R in half by cutting it, for example, along the line x = 0. Let R′ be the
top half and R′′ be the bottom half; let C ′ and C ′′ be the counterclockwise boundaries of R′

and R′′, respectively.

Then by additivity of integrals and Green’s theorem,∫∫
R
divFdA =

∫∫
R′

divFdA+

∫∫
R′′

divFdA

=

∫
C′

F · nds+

∫
C′′

F · nds.

The curves C ′ and C ′′ each trace half of C1 clockwise and each trace half of C2 counterclock-
wise, which gives us the two flux integrals in (1). Additionally, both C ′ and C ′′ trace the line
from (−2, 0) to (−1, 0) and from (1, 0) to (2, 0), but they do so in opposite directions—which
makes sense, because when R′ and R′′ touch, flux out of R′ is flux into R′′, and vice versa.
So those portions of the flux integrals cancel, and we get nothing other than (1).

• Let R1 = {(x, y) ∈ R2 : x2 + y2 ≤ 1} and let R2 = {(x, y) ∈ R2 : x2 + y2 ≤ 4}: the boundary
of R1 is exactly C1 and the boundary of R2 is exactly C2. Then R2 is the union of two
non-overlapping regions R1 and R2, so∫∫

R2

divFdA =

∫∫
R1

divFdA+

∫∫
R
divFdA.

3



Even if we cannot apply Green’s theorem to R, we can apply it to R1 and R2, getting∫
C2

F · nds =

∫∫
C1

F · nds+

∫∫
R
divFdA

and this can be rearranged to get (1).

The second argument seems simpler, but it has a drawback: unlike the first argument, it requires F
to be defined and differentiable throughout all of R1, as well. One of the main reasons we might
want to leave a hole in our region is to avoid places where a vector field F is undefined! It’s a good
thing we have the first argument, which is totally fine with that.

The intuition is clearer for flux, since “inward” and “outward” of region R have clear meanings,
but a similar result holds for the circulation as well. Working with the same regions, we have∫∫

R
curlFdA =

∫
C2

F · r−
∫
C1

F · r. (2)

Or, in other words, the integral of curlF over R is equal to the sum of the counterclockwise
circulation around C2 and the clockwise circulation around C1.

These facts generalize. Whenever we have a region R with one or more holes in it, we can apply
Green’s theorem to R anyway, but we must orient the boundary of R properly. The orientation
of the boundary compatible with a counterclockwise orientation of R is the orientation that makes
the “outside” boundary of R counterclockwise, and the “inside” boundaries clockwise.

Let’s see an example of using this in a setting where we’re forced to put a hole in R to avoid F
being undefined. We will return to the gravity vector field

F = − x i+ y j

(x2 + y2)3/2

and prove once again2 that for any simple closed curve C not passing through the origin,
∫
C F·dr =

0.

This is immediate if C does not contain (0, 0) inside it, since then we can apply Green’s theorem
to the interior of C, and curlF = 0. So suppose that C loops around the origin. Let C ′ be a circle
of a small radius ε > 0 around (0, 0). Provided ε is small enough, C ′ is entirely contained inside C.
If we let R be the region bounded between C ′ and C, then by (2), we have∫

C
F · dr−

∫
C′

F · dr =

∫∫
R
curlFdA = 0.

However, no matter what C is, we can compute the circulation integral around C ′. To do this,
parameterize it by

r(t) = (ε cos t, ε sin t), t ∈ [0, 2π].

We have dr
dt = −ε sin t i + ε cos t j, and there is lots of cancellation in when we evaluate F(r(t)):

x2 + y2 simplifies to ε2, so (x2 + y2)3/2 simplifies to ε3, and we get

F(r(t)) = −cos t i+ sin t j

ε2
.

2I apologize for the boring setting, but I wanted something where the algebra would not overwhelm us, and it’s
not like we haven’t done anything interesting in this lecture.
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The constant 1
ε2

looks dangerous, because it could be very very large—but in fact, F(r(t)) · dr
dt =

(− cos t)(− sin t) + (− sin t)(cos t) = 0, which stays 0 when we divide it by ε2. So we integrate 0
from 0 to 2π, and get 0, and conclude that

∫
C F · dr = 0 as well.

There is another way to make this work out. Instead of making C ′ be a very tiny curve that’s
completely inside C, make C ′ be a very large curve that completely encloses C: parameterize it
by

r(t) = (A cos t, A sin t), t ∈ [0, 2π].

Here, we don’t even have to do the work! All we need to know is that ∥F∥ = 1
x2+y2

at a point

(x, y), so when we integrate F ·T around a circle of radius A, we are integrating a quantity that’s
at most 1

A2 (in absolute value) over a curve of length 2πA. Therefore the answer must be less than
2π
A in absolute value, and this is true for any constant A > 0.

What we conclude from this is that for all A > 0,∣∣∣∣∫
C
F · dr

∣∣∣∣ = ∣∣∣∣∫
C′

F · dr+
∫∫

R
curlFdA

∣∣∣∣ ≤ ∣∣∣∣2πA + 0

∣∣∣∣ = 2π

A
.

But we can make the right-hand side arbitrarily small, by making A bigger! So in fact, the
circulation integral around C can only be 0.
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