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Lecture 2: Spherical coordinates
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1 Points in spherical coordinates

Spherical coordinates are a second generalization of polar coordinates to three dimensions. The
difference is that cylindrical coordinates kept the old polar variables, and added a new rectangular
dimension. Spherical coordinates, on the other hand, keep the philosophy of polar coordinates:
they specify a point in three dimensions by giving a distance from the origin, and a direction. The
direction now takes two angular coordinates to fully specify.

The first way to understand spherical coordinates is to start from our cylindrical picture of a point
P and its “shadow” Q; see Figure 1a. We will keep the θ coordinate, since it tells part of the story
for the direction to P , but the other cylindrical coordinates are only there for comparison.

We will use ρ for the spherical radius: this is the distance from the origin O to the point P .

Finally, once we’ve specified θ and ρ, our only degree of freedom is to “swing” the fixed-length
segment OP up and down. We let our third coordinate ϕ be the angle it makes with the positive
z-axis. The range of ϕ is from 0 to π. If ϕ = 0, then P is directly above the origin; if ϕ = π

2 , then
P is in the xy-plane; if ϕ = π, then P is directly below the origin.
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Figure 1: Two ways to understand spherical coordinates

Another way to gain intuition for spherical coordinates is to visualize them on a sphere. Let’s begin
by keeping ρ constant: for concreteness, say ρ = 1. This puts us on a sphere of radius 1 centered
at the origin.

If we pick a constant θ, and let ϕ vary from 0 to π, then we trace out a half-circle of radius 1
(Figure 1b). If we imagine that the sphere of radius 1 is the Earth, then θ gives us the longitude
(the east-west position), so the lines of constant θ are lines from the North Pole to the South
Pole.

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/
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If we pick a constant ϕ, and let θ vary from 0 to 2π, then we trace out a circle of varying radius
with center on the z-axis (Figure 1c). If we imagine that the sphere of radius 1 is the Earth, then
ϕ gives us the latitude (the north-south position), so the lines of constant ϕ are circles that loop
around the Earth in a plane parallel to the equator.

Be careful: the mathematical convention is different from the geographical one here! On Earth, the
latitude ranges from 90◦ N to 90◦ S, which we could think of as −π

2 to π
2 , where 0 is the equator.

Our ϕ coordinate adds π
2 to this coordinate: 0 is the North Pole, π

2 is the equator, and π is the
South Pole.

Returning to Figure 1a, we can try to relate spherical coordinates to rectangular ones by going
through cylindrical coordinates. Take a look at triangle △OPQ; it is a right triangle with hy-
potenuse ρ whose sides are r and z. The Pythagorean theorem says that ρ2 = r2 + z2; it is also
true that r2 = x2 + y2, so we get ρ2 = x2 + y2 + z2.

In this right triangle, ∠O is π
2 − ϕ (at least the way we’ve drawn P : with positive z-coordinate).

Therefore z
ρ = sin∠O and r

ρ = cos∠O, which tells us that z = ρ sin(π2 − ϕ) = ρ cosϕ, while
r = ρ cos(π2 − ϕ) = ρ sinϕ.

We already know that x = r cos θ and y = r sin θ, and putting these together gives us the formulas
relating spherical coordinates to rectangular coordinates:

x = ρ sinϕ cos θ

y = ρ sinϕ sin θ

z = ρ cosϕ

These are not always easy to remember. If you’re worried that you’ve messed up, try some special
cases: for example, make sure that ϕ = 0 gives a point on the positive z-axis, and ϕ = π

2 and θ = 0
gives you a point on the positive x-axis.

2 Integrating in spherical coordinates

To integrate in spherical coordinates, we must replace dV by some volume element ??? dρdϕdθ.
Let’s figure out what goes in the blank.

We first chop up space into nested shells of thickness ∆ρ. Taking one such shell with radius ρ, we
futher chop up its surface by curves of constant θ (spaced ∆θ radians apart) and curves of constant
ϕ (spaced ∆ϕ radians apart). You have already seen this picture: it is a globe, with parallels and
meridians dividing its surface into cells.

Let’s start with the height of one of these cells. The overall distance from pole to pole is πρ: halfway
around a circle of radius ρ. But we only go ∆ϕ

π of that distance, so the height is ρ∆ϕ.

The width is trickier: you can see that the width of a cell varies depending on where we are on the
sphere. That’s because it actually depends on r (the cylindrical radius: distance from the z-axis)
rather than ρ (the spherical radius: distance from the origin). In cylindrical coordinates, the width
of a cell would be r∆θ: a quantity we already saw in the previous lecture. Since r = ρ sinϕ, the
width of a cell for us is ρ sinϕ∆θ.
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When ∆ρ, ∆θ, and ∆ϕ is small, a cell on the spherical shell has volume

∆ρ× ρ∆ϕ× (ρ sinϕ)∆θ.

Therefore the quantity that replaces dx dy dz in our integrals must be ρ2 sinϕ dρdϕ dθ.

A quick application you should feel free to try on your own: take an integral as θ goes from 0 to
2π, ϕ goes from 0 to π, and ρ goes from 0 to a constant R. This should give you the volume of a
sphere of radius R, for which the formula is 4

3πR
3.

3 A spherical integral with center of mass

3.1 What is the center of mass?

Last time, we talked about the centroid of a region. A more concrete version of the centroid is the
center of mass of a physical object. The center of mass is basically the point where the object
will balance in any direction; the point where, if you apply force, it will just go in that direction
and not spin. If an object has uniform density, the centroid and center of mass are the same. But
what if the density is not uniform?

Two things change in this case. First, instead of the volume of our region, the relevant quantity is
the mass of the region. This is the integral of its density:

Mass(R) =

∫∫∫
R
δ(x, y, z) dV.

Second, when our region has non-uniform density, and we want to take that density into account,
we want to take averages differently. The density-weighted average of a function f : R3 → R is
given by

Avg(f) =
1

Mass(R)

∫∫∫
R
f(x, y, z)δ(x, y, z) dV =

∫∫∫
R f(x, y, z)δ(x, y, z) dV∫∫∫

R δ(x, y, z) dV
.

This has a number of applications. For example, in probability theory, if δ is a probability density
function of a random variable X with range R, then Avg(f) gives the expected (average) value of
f(X). In this application, δ is scaled so that Mass(R) = 1.

Second, when the density δ(x, y, z) is taken into account, the point (x, y, z) or (Avg(x),Avg(y),Avg(z))
becomes the center of mass of the region. This is the situation we’ll consider today!

3.2 An integral over a cone

Let’s do an example. First, a question: what region does the inequality 0 ≤ ϕ ≤ π
6 describe?

Since there is no constraint on θ, this region will be rotationally symmetric around the z-axis.
Since there is no constraint on ρ, it will extend infinitely far along straight rays out from the
origin. Finally, the constraint on ϕ tells us that we’re limited to rays that point in directions close
to upward. (Specifically, ϕ = π

6 corresponds to 60◦N on Earth; this is close to the latitude of
Anchorage, Alaska.)
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Therefore this region is an infinite solid cone, opening upward from the origin. (As a clear way to
describe this orientation of a cone, I propose calling it the “ice cream cone” orientation, as distinct
from the “party hat” orientation we get when the tip of the coin points upward.)

As an aside, we could also describe this infinite cone in cylindrical coordinates. To do this, use the

relationship r = z tanϕ. The constraint 0 ≤ ϕ ≤ π
6 is equivalent to the constraint 0 ≤ r ≤ z

√
3
3 ,

because tan π
6 =

√
3
3 ; we could also write this as z ≥ r

√
3. Anyway, we don’t want to use cylindrical

coordinates today, so let’s continue.

Now, let C be the bounded region obtained by cutting off this infinite cone at height z = 1. How?
This would be easy in cylindrical coordinates. In spherical coordinates, we should rewrite 0 ≤ z ≤ 1
as 0 ≤ ρ cosϕ ≤ 1. In particular, if we wanted to integrate over C, we could put an upper bound
of 1

cosϕ on ρ, writing an integral of the form∫∫∫
C

dV =

∫ 2π

θ=0

∫ π/6

ϕ=0

∫ 1/ cosϕ

ρ=0
ρ2 sinϕ dρdϕ dθ.

We wouldn’t make our lives complicated like this without a reason, so let’s give ourselves one.
Suppose our cone has a non-uniform density that scales with distance from the origin. What if
δ(ρ, ϕ, θ) = ρ?

In this case, our mass integral would be:

Mass(C) =

∫ 2π

θ=0

∫ π/6

ϕ=0

∫ 1/ cosϕ

ρ=0
ρ3 sinϕ dρdϕ dθ

= 2π

∫ π/6

ϕ=0

∫ 1/ cosϕ

ρ=0
ρ3 sinϕ dρdϕ

= 2π

∫ π/6

ϕ=0

ρ4 sinϕ

4

∣∣∣∣1/ cosϕ
ρ=0

dϕ

= 2π

∫ π/6

ϕ=0

sinϕ

4 cos4 ϕ
dϕ

= 2π

∫ √
3/2

u=1

(
− 1

4u4

)
du (u = cosϕ, du = − sinϕ dϕ)

= 2π · 1

12u3

∣∣∣∣
√
3/2

u=1

=
4π

9
√
3
− π

6
.

To find the center of mass, we have to do three more integrals. Fortunately, just as before, two of
the integrals can be avoided by use of symmetry: both the region R and its density are symmetric
in the x-direction and y-direction, so x = y = 0.
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To find z, we have to include a factor of z = ρ cosϕ in our integral. This results in∫∫∫
C
z δ(x, y, z) dV =

∫ 2π

θ=0

∫ π/6

ϕ=0

∫ 1/ cosϕ

ρ=0
ρ4 sinϕ cosϕ dρdϕ dθ

= 2π

∫ π/6

ϕ=0

∫ 1/ cosϕ

ρ=0
ρ4 sinϕ cosϕ dρdϕ

= 2π

∫ π/6

ϕ=0

ρ5

5
sinϕ cosϕ

∣∣∣∣1/ cosϕ
ρ=0

dϕ

= 2π

∫ π/6

ϕ=0

sinϕ

5 cos4 ϕ
dϕ.

At this point, we could once again do a u = cosϕ substitution, but I have a better idea. Observe
that the integral we wrote for Mass(C) is almost identical to this integral, except with a 4 in
the denominator instead of a 5. Therefore we know—without evaluating either integral past this
step—that the result of integrating z · δ(x, y, z) over C will be exactly 4

5 Mass(C). We do not need
the horrible quantity 4π

9
√
3
− π

6 ; no matter what that expression is, we get

z =
2π

∫ π/6
ϕ=0

sinϕ
5 cos4 ϕ

dϕ

2π
∫ π/6
ϕ=0

sinϕ
4 cos4 ϕ

dϕ
=

4

5
.

In conclusion, the center of mass of C is the point (x, y, z) = (0, 0, 45).
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