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1 Rotation vectors

So far, we have seen vectors used for two things: to indicate a point (in the plane or in space) or
to indicate a direction with magnitude. It’s useful to keep track of the difference: for example,
if a curve C is parameterized by a function r(t), then a particular value like r(0) is a point; the
derivative dr

dt

∣∣
t=0

is a direction with magnitude. To keep track of the difference in these lecture
notes, I have been using the notation (x, y, z) for points, and x i + y j + z k for directions with
magnitude.

A third way2 to interpret a vector, this time limited to vectors in R3, is as a rotation vector.

To see why rotations in R3 have exactly the right number of degrees of freedom (unlike, say,
rotations in R2), think about it this way:

• If you’re spinning the plane R2 about the origin, all we need to say about the spin is “which
way?” (clockwise or counterclockwise) and “how quickly?” This is described by a single real
number (positive or negative).

• If you want to spin an object in R3 about the origin, you need to first pick an axis of
rotation. Only then can you answer questions like “which way?” and “how quickly?”

A rotation vector does this as follows. Its direction tells us the axis of rotation, but also we adopt
the convention that, from the point of view of an observer facing the vector head-on, the rotation is
counterclockwise. Then, the magnitude of the rotation vector tells us how quickly we’re spinning R3

about that axis—for example, in units of radians per second.

One of the bizarre things about this approach to rotation is that it plays nicely with vector addition!
Suppose a and b are two rotation vectors. Then a+ b is the rotation ector that’s the result of the
rotations described by a and b happening at the same time.

Consider, for example, what happens when we take a unit sphere, and simultaneously apply the
rotations described by rotation vector i and rotation vector j? (See Figure 1.)

If P is the point (
√
2
2 ,

√
2
2 , 0) at the surface of the sphere, then the immediate effect of the first

rotation (described by i) is to push P upward—that’s where a rotation about the x-axis, coun-
terclockwise when viewed from its positive end, will spin a point in the xy-plane. Similarly, the
second rotation (described by j) will push P downward. Because P is equidistant from the x-axis
and y-axis, these effects exactly cancel out, and P stays put. This tells us the axis of the combined
rotation: it is the line through the origin O and P . (See Figure 1a.)

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/

3204-fall-2024
2But not a third notation—partially because we’ve run out of ways to denote vectors, and partially because the

same kinds of objects will situationally be used for different purposes.
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(b) Determining the rate of rotation

Figure 1: Combining the two rotations described by i (blue) and j (red)

Now look at what happens to the point Q = (0, 0, 1). From the point of view of vector i, the
point Q lies on a circle of radius 1 in the yz-plane, centered at the origin. A counterclockwise
rotation (viewed from the positive x-axis) will initially move Q in the −j direction. Meanwhile,
from the point of view of j, the point Q lies on a circle of radius 1 in the xz-plane, and its rotation
will initially move Q in the i direction. Adding these together means that the initial movement
of Q will be by the vector i − j: the combined rotation will be

√
2 times as fast as either of the

individual rotations. It is also counterclockwise when viewed from P . (See Figure 1b.)

Putting these together, we see that the combined rotation is described by a vector parallel to
−−→
OP ,

in the same direction, with magnitude
√
2. This vector is exactly i+ j, the sum of our two rotation

vectors!

Now all you have to do is take my word for it that this happens in general.

2 The curl of a vector field

Imagine a tiny leaf tossed about by hurricane-force winds; F is the velocity field of the air. Then F
itself is telling us where the leaf will be in the next instant—but that’s not the whole story.3 Tiny
changes in F on a small scale (i.e. the derivative of F) will tell us how the leaf spins when it occupies
a point (x, y, z). The rotation vector describing this spin is the curl of F at (x, y, z).

We have already seen this for 2-dimensional vector fields: the “circulation density” or “curl” of
F = M i +N j is given by the expression ∂N

∂x − ∂M
∂y . This expression can be lifted up to the third

dimension to tell us the rotation vector in one specific case: when F, despite being a 3-dimensional
vector field,

1. has no k-component (the velocity field is always parallel to the xy-plane), and

2. does not depend on z (the velocity field is the same at every height).

In such a scenario, the quantity ∂N
∂x − ∂M

∂y tells us the rate of counterclockwise rotation in the

3Actually, there’s three parts to the story; the third part, which we will not talk about, is the strain on the leaf,
which will tell us if it gets crushed or pulled apart by the wind.
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xy-plane. In three dimensions, to represent such a rotation, we use the rotation vector (∂N∂x −
∂M
∂y )k.

In general, though, there will also be effects that spin the leaf about other axes. Because rotations
add, we can just add up these effects. This leads us to the formula

curl(F) =

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂M

∂z
− ∂P

∂x

)
j+

(
∂N

∂x
− ∂M

∂y

)
k.

We have already seen this expression before, sort of: it comes from the component test for seeing
if F is a gradient field. To remind you: in that case, there’s a scalar function f : R3 → R such that
F = ∇f . In other words, M = ∂f

∂x , N = ∂f
∂y , and P = ∂f

∂z . In such a scenario, the components

of curl(F) should be 0 because they’re differences like ∂
∂y (

∂f
∂z )−

∂
∂z (

∂f
∂y ).

3 The “del” operator

Here’s another way to look at curl. Define the operator ∇ (or “del”) to be

∇ = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

This is a bit of a notational trick to help us describe several actual differential operators in consistent
ways.

This ∇ is consistent with our notation ∇f for the gradient vector of f :

∇f =

(
i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z

)
f =

∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.

The curl can now be written as ∇× F instead of curlF, because

∇× F = det

 i j k
∂
∂x

∂
∂y

∂
∂z

M N P

 =

(
∂P

∂y
− ∂N

∂z

)
i+

(
∂M

∂z
− ∂P

∂x

)
j+

(
∂N

∂x
− ∂M

∂y

)
k.

That is, by applying the rule for taking a cross product, we end up getting the definition of the
curl! (For example, the first positive diagonal in this determinant is i ∂

∂y P , or ∂P
∂y i.)

The component test can now be summarized by the rule that for all functions f : R3 → R, we
have

∇× (∇f) = 0.

Let’s look at an example, and use this formula to find the curl of F = xyz i + xez j + y arcsin z k.
Writing down

∇× F = det

 i j k
∂
∂x

∂
∂y

∂
∂z

xyz xez y arcsin z

 ,

we get:
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• Three positive diagonal products. These are i ∂
∂y y arcsin z = arcsin z i, then j ∂

∂z xyz = xy j,

then finally k ∂
∂x xe

z = ez k.

• Three negative diagonal products. These are k ∂
∂y xyz = xz k, then i ∂

∂z xe
z = xez i, then

finally j ∂
∂x y arcsin z = 0.

Adding these together, we get the final answer:

∇× F = (arcsin z − xez) i+ xy j+ (ez − xz)k.

Let me end with a few notes on terminology.

• ∇ “del” is also called “nabla” after a kind of triangular harp, which it looks like.

• curlF is also sometimes called the “rotor of F” (written rotF), short for the “rate of rotation”
of F.

• In the context of our wind example, where F is the velocity field of a fluid like air or water,
∇×F is called the “vorticity field” (from the word “vortex”). This is part of what makes F
“turbulent”.

That’s right: when you’re on an airplane, and there’s an announcement to stay in your seats
because the flight will be experiencing some turbulence, what they’re telling you is that the
vorticity field of the air up ahead has unusually high magnitude.
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