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1 From Green’s theorem to Stokes’ theorem

Here is a question you should be able to answer from what you know.

Let F be a three-dimensional vector field, and let S be a surface that happens to be entirely
contained in the xy-plane, oriented with normal vectors facing upward. What is the easiest way to
take the flux integral of F across S?

The answer is that in this case, ∫∫
S
F · ndA =

∫∫
S
F · k dx dy.

where the second integral is just a completely normal double integral of the scalar F · k (the k-
component of F) with respect to x and y.

There’s the intuitive reason for why this is true: k is the normal vector to S in the correct direction,
and dS and dx dy both represent area elements in the xy-plane.

We can also prove this formally using the techniques we know. Whenever S lies on the graph of
an implicit equation f(x, y, z) = 0 above a region R in the xy-plane, we can use this to convert the
flux integral across S into a double integral over R. In this case, our implicit equation is “z = 0”,
and the region R in the xy-plane is S itself. Normally, we’d be integrating F · ∇f

∇f ·k . In this case,
∇f = 0 i+ 0 j+ 1k = k, so ∇f · k = 1, and the whole thing just simplifies to F · k.

Now, a double integral of the k-component of some vector field has already come up once for
us—in the statement of Green’s theorem for circulation integrals. In that setting, if S is a region
in the xy-plane, F = M i + N j is a two-dimensional vector field, and C is the counterclockwise
boundary of S, then we have ∫

C
F · dr =

∫∫
S

(
∂N

∂x
− ∂M

∂y

)
dx dy.

In the two-dimensional world, we thought of ∂N
∂x − ∂M

∂y as the curl of F. Now that we’re thinking
in three dimensions, it is merely the k-component of curl: it is (∇× F) · k.

Putting this together with our initial observation today, we conclude: when S is an upward-oriented
surface in the xy-plane bounded by the counterclockwise curve C, we have∫

C
F · dr =

∫∫
S
(∇× F) · kdx dy =

∫∫
S
(∇× F) · ndA.

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/
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What we’re seeing on the right-hand side is “the flux integral of the curl of F across S”. That’s a
mouthful, so for simplicity, we will just call this integral the curl integral of F over S.

The new topic we are moving into next is Stokes’ theorem. This theorem says that the equation we
just wrote down for surfaces in the xy-plane holds more generally. If S is any surface in R3 and C
is its compatibly oriented boundary, and if F is any vector field in R3, then the following two things
are equal:

1. The circulation of F around C,

∫
C
F · dr.

2. The curl integral of F over S,

∫∫
S
(∇× F) · ndA.

2 Finding boundaries

Before we apply Stokes’ theorem in practice (something which we’ll focus on in the next lecture)
we should think about the objects we apply it to: surfaces and their boundaries.

This is where we are truly rewarded for sticking with rectangular-domain parameterizations for
our surfaces. It turns out that when a surface S is given the counterclockwise parameterization
r : [a, b] × [c, d] → R3, then we get parameterizations of its boundary for free—by setting the
parameters equal to their minimum and maximum values!

2.1 The hyperboloid

Let’s start with a straightforward example where nothing weird happens: the hyperboloid pa-
rameterized by r(u, v) = (u, v, uv) with (u, v) ∈ [−1, 1] × [−1, 1]. The surface itself is shown in
Figure 1a.
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(a) The surface S
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(b) The boundary of S

Figure 1: The hyperboloid and its boundary

The boundary of the rectangle [a, b]×[c, d] in the uv-plane is given by four line segments: from (a, c)
to (b, c) to (b, d) to (a, d) to (a, c). To obtain the boundary of our surface, we will take the image
of those line segments! That is done by fixing one of the variables u or v to a constant, and letting
the other vary with t:
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• The first segment of the boundary, where (u, v) goes from (a, c) to (b, c), is given by r1(t) =
r(t, c), where t ∈ [a, b].

In our example, we get r1(t) = r(t,−1) = (t,−1,−t) where t ∈ [−1, 1]. This is a line segment
from (−1,−1, 1) to (1,−1,−1).

• The second segment of the boundary, where (u, v) goes from (b, c) to (b, d), is given by
r2(t) = r(b, t), where t ∈ [c, d].

In our example, we get r2(t) = r(1, t) = (1, t, t) where t ∈ [−1, 1]. This is a line segment
from (1,−1,−1) to (1, 1, 1).

• For the third segment of the boundary, we have to get a bit tricky, because we want (u, v) to
go from (b, d) to (a, d). That means that the u-coordinate has to decrease from b to a. The
simplest way to write this is to have r3(t) = r(−t, d), where t ∈ [−b,−a].

In our example, we get r3(t) = r(−t, 1) = (−t, 1,−t), where t ∈ [−1, 1]. This is a line segment
from (1, 1, 1) to (−1, 1,−1).

• Finally, for the fourth segment of the boundary, we have to do the same thing again, with
the other variable. We take r4(t) = r(a,−t), where t ∈ [−d,−c].

In our example, we get r4(t) = r(−1,−t) = (−1,−t, t), where t ∈ [−1, 1]. This is a line
segment from (−1, 1,−1) to (−1,−1, 1), the point where we started.

The four segments we get are shown in Figure 1b. There’s one thing to watch out for: when going
around the boundary of [a, b]× [c, d], we want to change u first, then v. Doing it in the other order
would cause problems with orientations later.

2.2 The cylinder

There are a few important things to watch out for. The first is that sometimes two of these
boundaries cancel out.

For example, suppose we take the cylinder of height 3 parameterized by r(u, v) = (cosu, sinu, v),
where (u, v) ∈ [0, 2π]× [0, 3].

• We begin with r1(t) = r(t, 0) = (cos t, sin t, 0), where t ∈ [0, 2π]: a parameterization of the
unit circle in the xy-plane.

• Next, we have r2(t) = r(2π, t) = (cos 2π, sin 2π, t) = (1, 0, t), where t ∈ [0, 3]: a line segment
from (1, 0, 0) to (1, 0, 3).

• Next, we have r3(t) = r(−t, 3) = (cos−t, sin−t, 3) = (cos t,− sin t, 3), where t ∈ [−2π, 0]:
another circle, this time in the plane z = 3.

• Finally, we have r4(t) = r(0,−t) = (cos 0, sin 0,−t) = (1, 0,−t), where t ∈ [−3, 0]: a line
segment from (1, 0, 3) to (1, 0, 0).

Parameterizations r1(t) and r3(t) are what we expect to see: they are the curves along the top and
bottom of the cylinder. In fact, they’re all we expected. What’s up with r2(t) and r4(t)?
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These two parameterizations describe the same line segment, but with opposite orientation. If we
were to take any kind of line integral along the boundary, the effects from r2(t) and r4(t) would
cancel out. Once we realize this, we can drop them entirely—they do not contribute anything to
the boundary!

Here, because we know what cylinders look like, we know what to expect. In general, we should
be on the lookout for parts of the boundary where this effect happens.

2.3 The cone

For a third example, let’s take a cone of radius 1 and height 3, oriented so that its base is on the xy-
plane (centered at the origin) and its tip is at the point (0, 0, 3). This cone can be parameterized
by

r(u, v) = (u cos v, u sin v, 3− 3u), (u, v) ∈ [0, 1]× [0, 2π].

What happens when we try to find the boundary?

• We begin with r1(t) = r(t, 0) = (t cos 0, t sin 0, 3 − 3t), where t ∈ [0, 1]. This simplifies to
r1(t) = (t, 0, 3− 3t), and is a line segment from (0, 0, 3) to (1, 0, 0).

• Next, r2(t) = r(1, t) = (cos t, sin t, 0), where t ∈ [0, 2π]. This is a parameterization of the unit
circle: the base of the cone.

• Next, r3(t) = r(−t, 2π) = (−t cos 2π,−t sin 2π, 3 − 3t), where t ∈ [−1, 0]. This simplifies
to r3(t) = (−t, 0, 3 − 3t), where t ∈ [−1, 0], and is a line segment from (1, 0, 0) to (0, 0, 3),
canceling out with r1(t).

• Finally, r4(t) = r(0,−t) = (0 cos(−t), 0 sin(−t), 3 − 3(0)), where t ∈ [−2π, 0]. This simplifies
to r4(t) = (0, 0, 3): a constant!

What happened here is that r4(t) shows one of the ways a parameterization isn’t required to be
injective: an entire segment on the boundary of the domain [a, b] × [c, d] can be sent to a single
point. Here, that point is the tip of the cone.

In such a case, any line integral of the portion of the boundary parameterized by r4(t) will simplify
to 0 all by itself. (One reason for that: since r4(t) is a constant, we get dr4

dt = 0, which makes the
integral 0 as well.)

We can ignore r4(t) for this reason. We can also ignore r1(t) and r3(t), because they cancel. The
only boundary of the cone worth thinking about is r2(t) = (cos t, sin t, 0), where t ∈ [0, 2π].

3 Compatible orientations

The circulation integral and the curl integral in Stokes’ theorem are both oriented integrals: their
sign depends on the orientation of C and of S. This means that the two integrals will only be
equal if the orientations of C and S are chosen to be compatible. But what makes the orientations
compatible?

The first piece of good news: if we use the approach from the previous section to go from a
parameterization of S to a parameterization of C, then the orientations we get will automatically
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be compatible with each other. (For this to happen, it’s important that r1, r2, r3, r4 are defined
correctly: in the uv-plane, we want to take the boundary going counterclockwise, from (a, c) to (b, c)
to (b, d) to (a, d) to (a, c), instead of the reverse order.) This means that in many situations, we
will not have to worry about incompatibility between our orientations.

The underlying geometry, however, is worth understanding.

Figure 2: Compatible orientations of a rectangle and its boundary. You should interpret this 2D
image as depicting a 3D situation with the blue vectors pointing toward you.

For the most part so far, we’ve thought of orienting a surface as picking a normal vector for
that surface—but a normal vector at a point corresponds to a direction of rotation at that point.
We follow the same convention that we’ve used in every such instance so far: a normal vector n
corresponds to the direction of rotation that appears counterclockwise to a viewer facing the normal
vector head-on.

As we move around the surface, the normal vector changes continuously. When we bring the
normal vector close to the boundary of a surface, the direction of rotation indicates a direction
of following that boundary. We can see this in Figure 2: when we draw the blue normal vector
in close proximity to the red boundary, the blue arrows and the red arrows should be pointing in
similar directions.

This is compatibility of orientation. It’s a compatibility of orientation we didn’t really have to worry
about with Green’s theorem, in most cases. The normal vector k points upward from the xy-plane,
and this is compatible with a boundary that goes around the region counterclockwise. Dealing with
regions that have holes is a bit more difficult, but all that happens in the plane is that we subtract
the counterclockwise integral around each hole—or add the clockwise integral.

In three dimensions, we have to be more careful, because there’s no objective notion of “clockwise”
or “counterclockwise”.

For example, let’s return to the cylinder from earlier in this lecture. If the surface S is parameterized
by r(u, v) = (cosu, sinu, v) where (u, v) ∈ [0, 2π]× [0, 3], then

∂r

∂u
× ∂r

∂v
= det

 i j k
− sinu cosu 0

0 0 1

 = cosu i+ sinu j

which is a normal vector pointing outward from the cylinder. The calculations we did earlier gave
us a boundary consisting of two parts: a circle C1 parameterized by r1(t) = (cos t, sin t, 0), where
t ∈ [0, 2π], and a circle C3 parameterized by r3(t) = (cos t,− sin t, 3), where t ∈ [−2π, 0]. (Actually,
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we can clean C3 up a little and change the range of t to [0, 2π], since sin and cos both have a period
of 2π.)

If we view both C1 and C3 from above, it will look like we’re going counterclockwise around C1,
but clockwise around C3. This seems strange! It might seem less strange to you if you imagine
taking the rectangle in Figure 2, and wrapping it around a cylinder, seeing what happens to the
orientations.
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