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1 Stokes’ theorem and differential forms

When taking the flux integral of F = M i+N j+ P k across a surface S, we have used two forms
of notation: ∫∫

S
F · ndA =

∫∫
S
M dy ∧ dz +N dz ∧ dx+ P dx ∧ dy.

We can also think of this as the integral of the 2-form (differential form of degree 2) given by
M dy ∧ dz +N dz ∧ dx+ P dx ∧ dy. A differential form of degree 2 is the most general thing you
can integrate over a 2-dimensional object like the surface S.

How does this interact with the curl of a vector field? Well, it turns out that the curl operator ∇×
has an equivalent in the world of differential forms. This equivalent is the exterior derivative,
which we’ve already seen once when working in two dimensions.

For this, we’ll have to take F = M i +N j + P k and turn it into a differential form in a different
way: we’ll turn it into the 1-form M dx + N dy + P dz. The exterior derivative of this 1-form is
defined as

d(M dx+N dy + P dz) = dM ∧ dx+ dN ∧ dy + dP ∧ dz.

For example, suppose we start with the 1-form xyz dx+ ey dy + sinx dz. Then we get

d(xyz dx+ ey dy + sinx dz) = d(xyz) ∧ dx+ d(ey) ∧ dy + d(sinx) ∧ dz

= (yz dx+ xz dy + xy dz) ∧ dx+ ey dy ∧ dy + cosx dx ∧ dz

= xz dy ∧ dx+ xy dz ∧ dx+ cosx dx ∧ dz

= (xy − cosx) dz ∧ dx− xz dx ∧ dy.

As before, remember the two rules for simplifying wedge products:

1. For any variable u, du ∧ du = 0.

2. For any two variables u, v, du ∧ dv = −(dv ∧ du).

We begin by distributing, then use the first rule to cancel anything that simplifies to 0. Finally,
to collect like terms, we use the second rule to write the answer in terms of dy ∧ dz, dz ∧ dx,
and dx ∧ dy.

If you simplify the general exterior derivative d(M dx + N dy + P dz), you will see a surprising
thing. The exterior derivative operator is the same as taking the curl! More precisely, the result,
U dy ∧ dz + v dz ∧ dx+W dx ∧ dy, will satisfy

∇× (M i+N j+ P k) = U i+ V j+W k.

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/

3204-fall-2024
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This means that if we stick to differential form notation throughout, the statement of Stokes’
theorem becomes: ∫

C
M dx+N dy + P dz =

∫∫
S
d(M dx+N dy + P dz)

where S is an oriented surface in R3 and C is its compatibly oriented boundary. Or, if we define
ω = M dx+N dy + P dz, we get ∫

C
ω =

∫∫
S
dω.

2 A return to the component test

Let’s look at Stokes’ theorem together with the fundamental theorem of line integrals. If you recall
that theorem, it says that if a vector field F is really the gradient field ∇f of a scalar function,
then we can take line integrals of F simply by evaluating f . That is, if C is any curve that starts
at point a and ends at point b, then∫

C
∇f · dr = f(b)− f(a).

In particular, if C is a closed curve, we can think of it as starting and ending at the same point a,
and the circulation of F = ∇f around C is f(a)− f(a) = 0.

In the language of differential forms, ∇f = ∂f
∂x i+ ∂f

∂y j+
∂f
∂z k corresponds to

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz,

the exterior derivative of the function (or “0-form”) f . So in that form, the fundamental theorem
of line integrals says that ∫

C
df = f(b)− f(a).

A differential form which is an exterior derivative of another, lower-degree differential form is called
exact. So, for example, yz dx + xz dy + xy dz is an exact 1-form, because it is equal to d(xyz).
Also, (xy−cosx) dz∧dx−xz dx∧dy is an exact 2-form, because (as we saw in the previous section)
it is equal to d(xyz dx+ ey dy + sinx dz).

How do you test whether a differential form is exact? Well, there is a short one-way test. A
differential form ω is called closed if dω = 0. This is relevant because:

Theorem 2.1. All exact differential forms are closed. That is, for any differential form ω, taking
its exterior derivative twice yields d(dω) = 0.

Proof. There is a very general argument here that works for any degree of differential forms in any
number of dimensions. The idea is that when our differential form contains a scalar function f
somewhere inside it, taking the exterior derivative once turns f into

df =
n∑

i=1

∂f

∂xi
dxi
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and taking the exterior derivative again turns it into

d(df) =
n∑

i=1

n∑
j=1

∂2f

∂xi ∂xj
dxi ∧ dxj .

All “diagonal” terms (terms with i = j) simplify to 0, and all other terms pair up into pairs of the
form:

∂2f

∂xi ∂xj
dxi ∧ dxj +

∂2f

∂xj ∂xi
dxj ∧ dxi.

Here, the partial derivatives are equal2, but dxi∧dxj = −(dxj ∧dxi), so the two terms in each pair
cancel. This tells us that d(df) = 0 for any scalar function f . For a more complicated differential
form, this argument tells us that every scalar function in every term is annihilated by applying d
twice, and so the result is still 0.

This result about exterior derivatives corresponds to a statement about curl and gradient: for any
scalar function f , ∇×∇f = 0. Both of these are also equivalent to what we called the “component
test” for conservative vector fields, in the past.

Are all closed differential forms exact? The answer to that depends on the domain. It is true if
the differential form is defined on all of Rn (for whichever n makes sense; in this class, n can be 2
or 3). We’ve already seen an example of a 2-dimensional differential form that is undefined at 0,
and is closed but not exact.

Let’s stop being fully general, and limit our attention to 1-forms ω = M dx+N dy+P dz in R3. Here,
we are interested in whether ω is exact, because if it is, then integrals of ω are path-independent
by the fundamental theorem of line integrals. Equivalently, when we ask, “Is ω exact?” we really
want to know, “Does ω integrate to 0 around any closed curve?”

With the help of Stokes’ theorem, we can now give a very general answer. We call a region D ⊆ R3

simply connected if it has no “holes” in the following sense: every closed curve contained in D
is the boundary of some surface contained in D.

Theorem 2.2. Suppose ω = M dx+N dy + P dz is a closed differential 1-form defined on some
simply connected domain D. Then for every closed curve C contained in D, we have∫

C
ω = 0.

Proof. Because D is simply connected, there is a surface S contained in D whose boundary is C.
Therefore we can apply Stokes’ theorem: ∫

C
ω =

∫∫
S
dω.

Because ω is closed, dω = 0, so integrating dω over S also yields 0. This proves the theorem.

2This requires some niceness assumptions on the function f , but we make those assumptions by default when
working with differential forms.
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3 Two different types of holes

The theorems we proved in the previous section are very similar to theorems we proved when
working over R2. However, there is a sense in which they are more powerful, because the nature of
simply connected regions changes when we have 3 or more dimensions.

If a 2-dimensional differential form M dx+N dy is defined everywhere except the point (0, 0), then
its domain is not simply connected. A closed curve around the origin is not the boundary of any
bounded 2-dimensional region that avoids (0, 0).

If a 3-dimensional differential formM dx+N dy+P dz is defined everywhere except the point (0, 0, 0),
there is no trouble. This domain is still simply connected. For any closed curve C that avoids the
origin, we can draw a surface whose boundary is C that still avoids the origin. It would take an
infinite set of undefined points to give a non-simply-connected domain in R3.

To see this in action, let’s look at two differential forms that gave us some amount of trouble in
two dimensions:

ω1 =
−y dx+ x dy

x2 + y2
and ω2 = − x dx+ y dy

(x2 + y2)3/2
.

Both of these are closed: dω1 = dω2 = 0. Both of these are undefined at the origin, however. So
if C is a closed loop around the origin in R2, we cannot assume that the integral of ω1 or ω2 over C
is 0.

In fact, we’ve already seen that ω1 is irretrievably bad: its integral around the unit circle is 2π,
not 0. But ω2 can be rescued, and one way to rescue it is to think “outside the plane” and go
to R3.

Define the 3-dimensional differential form ω3 to be

ω3 = −x dx+ y dy + z dz

(x2 + y2 + z2)3/2
.

This extension of ω2 is “backwards compatible” in the sense that when we set z = 0, ω3 turns back
into ω2. In particular, if C is any closed curve in the plane that avoids the origin, then∫

C
ω2 =

∫
C
ω3.

Also, it is true (though it takes some tedious algebra to check) that ω3 is still closed: dω3 = 0.

Finally, ω3 is defined everywhere except the point (0, 0, 0). This is a simply connected subset of R3.
Therefore, by Theorem 2.2, we have ∫

C
ω3 = 0

for every closed curve C in R3 that avoids the origin. In particular, since this is true for the xy-
plane, we conclude that the differential form ω2 also has this property, even though Theorem 2.2
does not apply to it directly.
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