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1 Introduction to vector fields

1.1 Definitions and examples

Mathematically, a vector field (in R2, or R3, or Rn) is a function that assigns a vector to ev-
ery point. In two dimensions, this is a function F : R2 → R2 which assigns a vector F(x, y) =
(M(x, y), N(x, y)) to every point (x, y). In three dimensions, this is a function F : R3 → R3 which
assigns a vector F(x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z)) to every point (x, y, z).

Here’s an example of a vector field you may have already seen: wind maps. These are radar maps
which indicate the way the wind is blowing (in terms of direction and magnitude) in a region. If
you look at wind maps on your computer2 you get to see animations that make it very clear how
the air is moving.

On paper, the best we can do is to draw arrows, as in Figure 1, which you can imagine to be the
wind map of the eye of a hurricane centered at (0, 0). We cannot map the behavior of the wind
everywhere, so we map it at many evenly-spaced points. By convention, the arrow starting at a
point (x, y) points in the direction that the wind is blowing at (x, y), and the length of the arrow
is proportional to the wind speed.

x

y

Figure 1: Visualizing a vector field with arrows at evenly spaced points.

More generally, we can define velocity fields of particles like air or water: this is a vector field F
where the value F(x, y) tells us the velocity of particles at the point (x, y). We can do this in three
dimensions as well! In principle, our wind maps should be three-dimensional vector fields where

1This document comes from an archive of the Math 3204 course webpage: http://misha.fish/archive/

3204-fall-2024
2Here is an example: https://www.accuweather.com/en/us/national/wind-flow. Of course, I am not affiliated

with AccuWeather and make no promises about the future of this URL.
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F(x, y, z) tells us the three-dimensional velocity of wind at a point (x, y, z). We don’t do this in
practice because this would be very hard to visualize, and because the (x, y)-component of wind is
usually more significant.

Another important example from physics is force fields. These are not glowing barriers that stop
lasers. Force fields are vector fields that indicate the direction and magnitude of physical forces
(like gravity or magnetism) at a point.

1.2 Intuition and notation

Not every function F : Rn → Rn makes sense as a vector field. We really want the output of F to be
a vector that points in a direction relative to the point we give as an input. To give a non-example:
if we assign each point on a two-dimensional map the pair (temperature, pressure), that’s a function
R2 → R2, but it does not have a good vector field interpretation.

The distinction we’re drawing is that a point represents a position, and a vector represents a
difference between two positions. Many operations that make sense for vectors do not make sense
for points:

• The 0 vector is always a very important vector. For example, on a wind map, it represents
a complete absence of wind. On the other hand, the point (0, 0, 0) is just an arbitrary point
chosen so that we can put coordinates on R3; there is nothing special about it.

• We can add, subtract, and scale vectors; for example, we can ask, “What if the wind were
blowing in the same direction, but twice as much?” It does not make sense to talk about
multiplying a point by two, except indirectly (in relation to the origin).

In this class, I will distinguish points and vectors by the notation I use. (I will not require you
to do this; this is just an aid to help you keep track of the quantities we’re dealing with.) I will
write:

• (x, y, z) for a point with coordinates x, y, z.

• x i+ y j+ z k for the vector pointing from (0, 0, 0) to (x, y, z).

In particular, i, j, and k are the standard basis vectors of R3: they are the vectors pointing from
(0, 0, 0) to (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively.

I have already done this once: when dealing with a parameterization r : [a, b] → R3, the value of
r(t) is a point (x(t), y(t), z(t)), but its derivative dr

dt is a vector dx
dt i+

dy
dt j+

dz
dt k.

Similarly, when dealing with a vector field F : R3 → R3, I will not write

F(x, y, z) = (M(x, y, z), N(x, y, z), P (x, y, z)).

Instead, I will write
F = M i+N j+ P k.

(You also see me dropping the arguments of the functions, writing dr
dt rather than dr(t)

dt and M i
rather than M(x, y, z) i. This is just to simplify notation; these things are still functions of the
variables they should be functions of.)
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2 Doing some math with vector fields

2.1 A few examples

Figure 2 shows three vector fields in R2 with simple formulas. We will often use these as examples,
and it helps to see them and where their properties come from.

(You should make sure that you’re able to draw at least a sketch of these vector fields in examples
like these. Of course, if the vector fields get too complicated, we don’t want to draw them by
hand.)

x

y

(a) F = x i+ y j

x

y

(b) F = −y i+ x j

x

y

(c) F = y i+ x j

Figure 2: Three simple vector fields in R2.

Figure 2a shows the vector field F = x i + y j. All the vectors here point directly away from the
origin, and their magnitude is proportional to the distance from the origin. (This is a good time to
point out that we draw vector fields with the arrows proportional to the magnitude of the vector,
but usually not equal in magnitude to that vector. If we did that, our arrows would be much longer;
they’d overlap, and the diagram would be impossible to read!

Figure 2b shows the vector field F = −y i+xj. First of all, this vector field clearly has some amount
of counterclockwise rotation happening (which we will eventually learn how to quantify). As we go
further out from the origin, the “angular velocity” of the vectors remains the same, which means
that the magnitude in the usual sense eventually becomes very big.

Figure 2c has mixed behavior. In the first and third quadrant, the vector field points away from
the origin; in the second and fourth quadrant, the vector field points toward the origin.

2.2 The gradient field

A scalar function f : R3 → R is often called a scalar field: just as a vector field gives us a vector at
every point of R3, a scalar field gives us a scalar (that is, a real number) at every point of R3.

The gradient field (or just gradient) ∇f of a scalar function f is a a vector field:

∇f =
∂f

∂x
i+

∂f

∂y
j+

∂f

∂z
k.
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By taking each component to be the rate of change of the corresponding variable, we end up getting
a vector that points in the direction where f is increasing the most.

Here’s a two-dimensional practical example. Suppose that f is a topographical map of a region:
f(x, y) gives us the height above sea level at coordinates (x, y). (For this example, we ignore the
global curvature of the Earth.) Then at each point (x, y), ∇f is a vector pointing in the direction
of the steepest incline; its magnitude ∥∇f∥ is the tangent slope in that direction. When does
this gradient field play a role? Well, for example, after heavy rainfall: when it rains, the water
will flow along the steepest downward slope, so its movement will be described by the vector field
−∇f .

In Figure 2, two of the diagrams show gradient fields. Figure 2a is the gradient field of f(x, y) =
1
2(x

2 + y2). (In the topographical analogy, f represents a parabolic hole in the ground, centered
at the origin. The direction of steepest ascent is away from the origin, and the further you go, the
steeper the climb is.) Figure 2c is the gradient field of f(x, y) = xy. (In the topographical example,
this is a saddle point—mountain passes often have approximately this shape. To the northeast and
southwest are two mountains; to the northwest and southeast, we can descend into a valley.)

Not every vector field is a gradient field. It is not yet obvious why, but the vector field in Figure 2b
is not the gradient field of any function f . (We will see how to determine this later!)

2.3 Work

Work is an unfortunately frustrating concept from physics. We will discuss it now because it
motivates the vector line integrals that we will see in the coming lectures.

In this setting, our vector field F should be a force field; the easiest force to imagine as an example
is gravity. We are tracking the path of some object which our force is capable of pushing around
somehow.

However, the object does not necessarily move the way that the force pushes it! Some exam-
ples:

• Suppose an object is sliding down a slope. Gravity is pulling it down; however, the object
also ends up moving horizontally, not in the direction of the force we’re looking at.

• Suppose you throw a ball high up into the air. Initially, the ball is moving upward: directly
opposite to the effect of gravity!

The work done by a force measures how much the force is “helping” accomplish the actual motion
we observe. Here’s how this plays out in our two examples:

• Whether an object slides down a steep slope or a shallow slope, if its altitude decreases by 1
food, then gravity “contributed” the same amount of work to the result.

• As a ball flies up, gravity is doing negative work: the opposite of helping. As the ball goes
down, gravity is doing positive work. If the ball starts and ends in your hand, the net amount
of work done by gravity is 0.

You may object that intuitively, gravity is doing a lot more than 0 in the service of making sure
that the ball ends up back in your hand! That is good intuition for something, but that something
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is not what the physicists are calling work.

You shouldn’t be asking yourself: how did the ball travel, and how would it have traveled in a world
without gravity? That is an unrelated hypothetical. Instead, imagine that the path of the ball is
fixed ahead of time, and ask: how much easier or harder is it to accomplish that in a world with
gravity, as opposed to in a world without gravity? The answer is: the first segment of the ball’s
path is harder to accomplish when gravity exists (so gravity is doing negative work). The second
segment is easier to accomplish when gravity exists (so gravity is doing positive work). Overall,
the path is equally hard to follow with or without gravity.

In the very simplest case, suppose our vector field is constant: a fixed force F no matter where we
are in space.

• If the object moves by a vector s parallel to F and in the same direction, then the work done
is the product ∥F∥ ∥s∥: how much was the force helping at each step, multiplied by how far
the object had to go.

• If the object moves by a vector s parallel to F, but in the opposite direction, then the work
done is −∥F∥ ∥s∥: the same, but with the opposite sign.

• If the vector s is orthogonal to F (at a 90◦ angle to F), then the work done is 0: motion
orthogonal to F is equally hard with or without the presence of F.

Note that s is orthogonal to F if and only if the dot product F · s is 0.

• If the vector s makes an angle of θ with F, that corresponds to a mix of the previous cases:
motion parallel to F over some length s1, and motion orthogonal to F over some length s2.
Ignoring the second component, we get ∥F∥ s1 for the amount of work done.

We allow s1 to be negative, though a negative length doesn’t make much sense, to account
for the difference between the first two cases.

How do we figure out what s1 and s2 are? One way to do it is with trigonometry: s1 = ∥s∥ cos θ
and s2 = ∥s∥ sin θ. This gives us ∥F∥ ∥s∥ cos θ for the amount of work done.

Algebraically, this is equal to the dot product F ·s. This is much more convenient in practice, since
if F = M i +N j + P k and s = x i + y j + z k, then F · s is the sum of products Mx +Ny + Pz.
This is the definition we will almost always want.

Here’s a proof that the dot product really does compute the same quantity. The parallel-orthogonal
decomposition of s is

s =
F · s
∥F∥2

F︸ ︷︷ ︸
parallel

+

(
s− F · s

∥F∥2
F

)
︸ ︷︷ ︸

orthogonal

.

To check this, check that the dot product of F with the orthogonal component really is 0.

Therefore s1 = ∥s∥ cos θ is just the length of the parallel component F·s
∥F∥2F, which simplifies to F·s

∥F∥ .

Multiplying by ∥F∥ gives us F · s as the answer.
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