
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 1: What is a linear program?

August 16, 2022 Kennesaw State University

1 Linear programs and optimization

“Linear programming” suggests telling a computer to do linear stuff. But that’s not what the word
“programming” means in the title of this class. In this context:

• “programming” means “optimization”: finding a point that maximizes (or minimizes) the
value of a function.

• “linear” means that the functions we optimize will be linear, and the constraints on our
optimization will all be linear equations or inequalities.

Today, we will take an example linear program from formulation all the way to finding a solution,
and see some basic ideas of linear programming along the way.

Problem 1. At a major music company, you are in charge of hiring for the xylophone department
and the yodeling department. You want to change the number of employees in the xylophone de-
partment by x and in the yodeling department by y. (Both x and y can be positive or negative: you
can hire people or you can fire people.)

Right now, the xylophone department is doing well: each employee is bringing you $1000 in profit
each day. However, the yodeling department is actually a loss for the company: each employee is
losing $300 for the company each day.

What should you do to maximize profit, given the following constraints?

• x+ y ≤ 50: you don’t have office space to increase the total size of the departments by more
than 50.

• y ≥ −20: the yodeling department will just stop functioning if it loses more than 20 people.

• The yodelists’ union has forced you to agree to the constraint 2x− y ≤ 40 in a recent negoti-
ation.

Here’s the problem written down without words:

maximize
x,y∈R

1000x− 300y

subject to x+ y ≤ 50
y ≥ −20

2x− y ≤ 40

(A subtle issue: we’ve written x, y ∈ R but actually x and y should be integers: you can’t hire 1
2 of

a yodelist. We’ll ignore this problem today and return to it near the end of the semester.)

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022

1.1 The feasible region

The linear program has a set of constraints: x+ y ≤ 50, y ≥ −20, and 2x− y ≤ 40. In general,
we will allow our constraints to be linear inequalities or linear equations. (But don’t worry about
“equations” for now: we’ll limit ourselves to inequalities for the moment.)

In linear algebra, we write down a system of equations as a single matrix equation. In linear
programming, we will also write down a system of inequalities as a single matrix inequality. Here’s
how we do it.

First, we should make sure all our variables are on one side, if we haven’t done that already. In
this example, that’s already been done. Second, let’s multiply the second inequality by −1, so that
all the inequalities are ≤ inequalities:

x+ y ≤ 50
−y ≤ 20

2x− y ≤ 40

The column of values on the left-hand side can be written as a matrix multiplication: x+ y
−y

2x− y

 =

1 1
0 −1
2 −1

[
x
y

]
.

So we will summarize this system of inequalities as the matrix inequality1 1
0 −1
2 −1

[
x
y

]
≤

5020
40

 .

Putting a single “≤” between two vectors is something you might not be used to. What it means is
that every component of the vector on the left is less than or equal to the corresponding component
of the vector on the right.

What happens in general? Suppose our linear program has n variables that, for lack of creativity,
we will call x1, x2, . . . , xn. We can put all these variables together into a column vector x ∈ Rn.
Then any collection of m linear inequalities in x1, . . . , xn can be combined into a matrix inequality
Ax ≤ b where A is an m× n matrix and b is an m× 1 vector.

The set {x ∈ Rn : Ax ≤ b} of all x which satisfy the constraints is called the feasible region. In
our example, the feasible region is shown below (it extends infinitely far to the left):

x

y

y = −20

x+ y = 50

2x− y = 40

2

A point x in the feasible region is called a feasible solution. You should think of it as follows: a
point (x, y) in this region is a feasible decision you could make (even if it loses your company a lot
of money), whereas a point (x, y) outside this region is just not an option you could choose.

1.2 The objective function

The linear program also has an objective function: we want to maximize 1000x − 300y. In
general, we might be maximizing or minimizing an arbitrary linear function.

What does an “arbitrary linear function” look like? Well, we can write 1000x− 300y as a product
of a row vector and a column vector:

1000x− 300y =
[
1000 −300

] [x
y

]
.

(Technically, one of these is a scalar and one of these is a 1× 1 matrix, but we will often ignore the
difference.)

More generally, when we have a vector of variables x ∈ Rn, we can write the objective function as
cTx for some constant vector c ∈ Rn.

Putting together these ideas, any linear program can be written as

maximize
x∈Rn

cTx

subject to Ax ≤ b.

What about minimizing? Well, minimizing cTx would be the same as maximizing its negative
(−c)Tx. We will encounter both kinds of linear programs in class, but we don’t lose any generality
by focusing on one kind whenever it’s convenient.

Whether we’re minimizing or maximizing, a point x ∈ Rn with the best value of the objective
function is called an optimal solution. In our example, the point (x, y) = (30, 20) is the unique
optimal solution, as we’ll see in a moment.

2 The naive approach to solving linear programs

Let’s go back to the original linear program. Here are some possible values of the objective function
1000x− 300y, and the places where they occur:

x

y 1000x− 300y = 16000

1000x− 300y = 20000

1000x− 300y = 24000

1000x− 300y = 28000

3

Pick a small value of 1000x− 300y (such as 16000) and the feasible points with that value of x− y
are a line segment. Pick a large value of 1000x − 300y (such as 28000) and there are no feasible
points with that value of 1000x − 300y. But when 1000x − 300y = 2400, just before the value
becomes impossible, the segment shrinks to a single point: a corner of the feasible region.

Without drawing this picture and lots of carefully measured parallel lines, all we know is that this
happens a some corner. Where are the corners? Well, at each corner, two of our boundary lines
intersect. So we can try taking our boundaries two at a time, and seeing where they intersect:

• x+ y = 50 and 2x− y = 40 when (x, y) = (30, 20). This is one of our corners: the top one.

• 2x− y = 40 and y = −20 when (x, y) = (10,−20). This is the lower of the two corners.

• x+y = 50 and y = −20 when (x, y) = (70,−20). This is not actually a corner: two boundaries
intersect here, but the inequality 2x− y ≤ 40 does not hold.

Now we can compare the values of 1000x−300y at (30, 20) and (10,−20). The first corner turns out
to be better than the second, so that’s our optimal solution. (There’s actually one more important
thing to check, which we’ll get to in a bit, but in this case it doesn’t affect the answer.)

This is the “naive” approach to solving linear programs. It’s quick to explain, and for small
examples, especially ones you can draw in the plane, it may be the easiest thing to do.

Imagine, however, that you have a linear program with 50 variables and 100 inequalities. (This is
a “tiny” linear program: my computer solves one of these in approximately 0.03 seconds.) With
the naive approach, there are

(
100
50

)
= 100 891 344 545 564 193 334 812 497 256 combinations of 50 of

the equations bounding the region. Each of these combinations (in general) intersects at a single
point, so we need to compare that many points to find the best one.

Our goal in this class is going to be to try to do less work than this. Ahead of us is the simplex
method, which starts at one vertex of a linear program, and moves from vertex to vertex until it
finds the best one: hopefully long before it visits all the vertices. We won’t solve problems with
100 inequalities, but computers solve such problems in a very similar way.

2.1 Misbehaving linear programs

In the previous example, our linear program had a unique optimal solution, but this is not always
guaranteed to be true. What can go wrong?

1. The optimal solution might not be unique. Imagine that the lines we are drawing are
parallel to a boundary of the region. Then several corners are equally good! This is a minor
problem, as these things go, but it will complicate our life a little.

2. The optimal solution might not exist, because the objective function can be
arbitrarily large. Imagine that we are minimizing 1000x− 300y, not maximizing. Then we
can keep moving the dashed line farther and farther left, and getting lower and lower values.

This means one of two things: either we found a hack to get infinite profits, or (more likely)
there is another constraint we didn’t model because it’s “obvious”: to us, but not to the linear
program. Maybe we can’t actually hire 1000 yodelists and fire 1000 xylophonists, because we
don’t have that many xylophonists to fire!

4

Either way, even the naive approach needs to worry about this: we should check that in the
direction that our region extends forever, the solutions keep getting worse and not better. We
won’t go into detail about how to check this, because we won’t be using the naive approach.

3. The optimal solution might not exist, because there are no feasible solutions.
Imagine that the constraints we have contradict each other: there is no way to satisfy all of
them. This is a time to rethink our model and see if we can relax some constraints. (Maybe
union negotiations have actually forced us to acquire more office space before they can be
satisfied, for example.)

5

	Linear programs and optimization
	The feasible region
	The objective function

	The naive approach to solving linear programs
	Misbehaving linear programs

