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1 Calculating the reduced costs

Last time, we used the notation AI and xI to pick out columns of a matrix, or entries from a
vector, with indices given by a sequence I.

We used this to write down a formula for a basic solution to the system of equations Ax = b:
if the basic variables are numbered by B, and the nonbasic variables are numbered by N , then
the corresponding basic solution has xB = (AB)

−1b and xN = 0. A general solution has xB =
(AB)

−1(b−ANxN ).

Let’s continue by doing the same thing for the objective function. In general, this is an expression
of the form cTx = c1x1 + c2x2 + · · · + cnxn. This, too, can be split up by basic and nonbasic
variables: cTx = (cB)

TxB + (cN )TxN . If we want to know the objective value at a basic solution,
we set xB = (AB)

−1b and xN = 0 to get (cB)
T(AB)

−1b.

What about the reduced costs? Well, let’s write (cB)
TxB + (cN )TxN just in terms of xN . To do

this, we use the formula xB = (AB)
−1(b−ANxN ) and get

cTx = (cB)
T(AB)

−1(b−ANxN ) + (cN )TxN

= (cB)
T(AB)

−1b+
(
(cN )T − (cB)

T(AB)
−1AN

)
xN .

So the row vector of our reduced costs is given by the formula (cN )T − (cB)
T(AB)

−1AN .

We’re writing the product (cB)
T(AB)

−1 a lot, so let’s give it a name: let’s call it uT. (It has a
transpose because it’s a row vector.) We’ll learn much more about this vector later; for now, it’s
just a vector that’s handy in our calculations!

All this can be summarized by putting our dictionaries in matrix form:

ζ = uTb +
(
(cN )T − uTAN

)
xN

xB = (AB)
−1b− (AB)

−1ANxN

When doing the ordinary simplex method, it would be bad to recompute the dictionary at every
step using these formulas, because computing (AB)

−1 at every step is expensive. On the other
hand, this can be useful to compute a dictionary if, for some reason, all you know is which variables
are basic.

We will also use these formulas in the revised simplex method: an improvement on the simplex
method which is more computationally efficient by avoiding unnecessary calculations.

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022
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2 The revised simplex method

2.1 Finding a basic solution using matrices

Consider the following problem:

Problem 1. You are an adventurer who has just slain a dragon. You’re standing in the dragon’s
lair, admiring the hoard of gold, jewels, magic artifacts, and so forth. Unfortunately, you can’t
take it all. You’re limited by volume (whatever will fit in your backpack: say, 100 units) and weight
(whatever you can carry: say, 30 kg), and you want to find the most valuable combination of objects
possible under those constraints.

We assume that all kinds of objects are continuous enough that we can say “take xi kilograms of
the ith object” for any plausible xi, and plentiful enough that there’s no constraints other than the
total weight and volume. However, there’s lots of them: maybe you have a table along the lines of

Gold Silver Rubies Diamonds Magic rings Spell scrolls Stale cookies

Price/kg 2 1 3 5 2 5 0

Volume/kg 3 3 1 2 4 5 5

How do you figure out the most efficient combination of precious items?

We just have two constraints here, aside from nonnegativity constraints:

• if x1, . . . , x7 measure the total amount of the objects in kilograms, then we want x1 + x2 +
x3 + x4 + x5 + x6 + x7 ≤ 30.

• The volume/kg row of the table gives us the constraint on volume: 3x1 + 3x2 + x3 + 2x4 +
4x5 + 5x6 + 5x7 ≤ 100.

The price/kg row gives us the objective function: we want to maximize 2x1 + x2 + 3x3 + 5x4 +
2x5 + 5x6.

The challenging part is the number of variables (most of which will not be used in the optimal
solution). If 7 variables (9 when we add slack variables) is not bad enough for you, you can imagine
a more varied hoard for which the problem would be much worse.

We will do something unusual with the notation today. To make it easier to connect our dictionary
to the matrix formulas, we will name our slack variables x8 and x9, putting them at the end of our
vector x. The variables that describe our linear program are:

cT =
[
2 1 3 5 2 5 0 0 0

]
A =

[
1 1 1 1 1 1 1 1 0

3 3 1 2 4 5 5 0 1

]

b =

[
30

100

]
.

Normally, our first choice of basic variables would be B = (8, 9): the slack variables. To try out
our new formulas, we’ll take B = (1, 7): we’ll consider filling up our backpack with gold and stale
cookies.
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The first thing to compute is (AB)
−1. We have

AB = A(1,7) =

[
1 1

3 5

]
=⇒ (AB)

−1 =

[
5
2 −1

2

−3
2

1
2

]
.

No matter what we do next, we probably want to know the basic feasible solution (though you
have only my word that it’s going to turn out feasible) and the associated objective value:

(AB)
−1b =

[
5
2 −1

2

−3
2

1
2

][
30

100

]
=

[
25

5

]
(cB)

T(AB)
−1b =

[
2 0

] [25
5

]
= 50.

So we are currently taking 25 kg of gold and 5 kg of stale cookies, which will bring us a profit of
50 in whatever currency.

2.2 Being careful about what we compute

The fundamental idea of the revised simplex method is that now we are going to be very careful
not to do too much work. In particular, to fill in the entire dictionary at this point, we’d need to
compute (AB)

−1AN , and that’s a really annoying matrix multiplication. Can we avoid it?

Well, our first step in the simplex method is to choose an entering variable. This only involves
looking at the reduced costs. We have two choices:

• We could go ahead and compute the entire row of reduced costs. This has the formula
(cN )T − (cB)

T(AB)
−1AN . To compute this as efficiently as possible, we’d begin by finding

uT = (cB)
T(AB)

−1, then calculating (cN )T − uTAN . This avoids having to deal with the
product (AB)

−1AN .

• If we use Bland’s rule for pivoting, then we get to save some work. After computing uT, we can
find the reduced cost of variable xi by calculating ci−uTAi: xi’s component of (cN )T−uTAN .
Bland’s rule says that we can stop once we find the first positive reduced cost.

This helps counteract the disadvantage of Bland’s rule: its slowness. We don’t mind doing
more pivot steps if each pivot step becomes faster!

Either way, we begin by computing

uT = (cB)
T(AB)

−1 =
[
2 0

] [ 5
2 −1

2

−3
2

1
2

]
=

[
5 −1

]
.

Let’s try computing the reduced costs one at a time. Silver (x2) gives us

c2 − uTA2 = 1−
[
5 −1

] [1
3

]
= 1− (5 · 1− 1 · 3) = −1.

Doing the same calculation for rubies (x3) gives us c3 − uTA3 = 3 − (5 · 1 − 1 · 1) = −1, but for
diamonds (x4) we finally get c4 − uTA4 = 5− (5 · 1− 1 · 2) = 2, which is positive.
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Now that we know x4 is our entering variable, we want to find our leaving variable. The trick is
that we don’t need all of (AB)

−1AN to do this! We only care about x4’s column of that matrix,
which is given by

(AB)
−1A4 =

[
5
2 −1

2

−3
2

1
2

][
1

2

]
=

[
3
2

−1
2

]
.

Remember that our dictionary has xB = (AB)
−1(b−ANxN ) in it, so we are subtracting (AB)

−1A4x4.
Our shortlist of leaving variables comes from negative coefficients, which means we’re looking for
positive values in (AB)

−1A4. The 3
2 is positive, which puts our first variable in B = (1, 7) on our

shortlist: x1.

If we had more than one variable on our shortlist, we’d continue by computing the ratios between
the column (AB)

−1A4 we just found, and the column (AB)
−1b that we computed earlier. But in

this case, we can skip that step: x1 is the only candidate.

So now we know x4 is our entering variable and x1 is our leaving variable. We’re done, right? We
can just go to the next step with B = (4, 7).

Not so fast! We really don’t want to compute (AB)
−1 again at each step. (In this example, it’s

only a 2× 2 matrix inverse, but for larger systems, the inverse is much harder to compute.) Let’s
try to compute the inverse of A(4,7) (the new inverse we want) from the inverse of A(1,7) (the old
inverse we have).

Here’s the idea. Using our old B, we already know all the entries of

(A(1,7))
−1A(1,4,7) =

[
5
2 −1

2

−3
2

1
2

][
1 1 1

3 2 5

]
=

[
1 3

2 0

0 −1
2 1

]
.

The column corresponding to x4, we just computed. The columns corresponding to x1 and x7 must
form an identity matrix by the definition of a matrix inverse.

What we want to see is a result of the form

(A(4,7))
−1A(1,4,7) =

[
? ?

? ?

][
1 1 1

3 2 5

]
=

[
? 1 0

? 0 1

]

because whatever (A(4,7))
−1 is, multiplying by it must turn the x4 and x7 columns of A into the

identity matrix.

We can figure out what row operations turn (A(1,7))
−1A(1,4,7) (the first 2 × 3 matrix above) into

(A(4,7))
−1A(1,4,7) (the second 2 × 3 matrix above). To do this, we multiply the first row by 2

3 (to

turn 3
2 into 1) and then add half the result to the second row (to turn −1

2 into 0).

But row operations are just matrix multiplication from the left. So those same row operations will
turn (A(1,7))

−1 into (A(4,7))
−1, which is what we want! We take (A(1,7))

−1, multiply the first row

by 2
3 , and then add half the result to the second row:

(A(1,7))
−1 =

[
5
2 −1

2

−3
2

1
2

]
⇝ A−1

(4,7) =

[
5
3 −1

3

−2
3

1
3

]
.
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2.3 A summary of the revised simplex method

Let’s summarize what we did in a set of instructions, so that we can do it again.

0. At the beginning of each pivot step, we should already know B (the sequence of basic variables)
and (AB)

−1 (the inverse of the corresponding matrix).

1. We calculate (AB)
−1b (which tells us the current basic feasible solution) and uT = (cB)

T(AB)
−1

(which will be useful for calculations).

2. To determine the entering variable, we compute reduced costs: as before, we want a positive
reduced cost for maximizing and a negative one for minimizing.

The reduced cost of xi is given by ci − uTAi. We can compute this for all the variables, but
if we’re using Bland’s rule, we can find them one at a time until we get one with the correct
sign.

3. Let xj be the entering variable. We compute (AB)
−1Aj to find the coefficients of xj in our

dictionary. The rules are slightly different due to a negative sign in our formulas:

• The leaving variables on our shortlist correspond to the positive components of (AB)
−1Aj .

• If multiple variables are on our shortlist, choose the one with the smallest ratio, dividing
a component of (AB)

−1b by the corresponding component of (AB)
−1Aj .

4. Let xk be the leaving variable, and suppose that it’s the ith variable in the list B. Our new
sequence of basic variables will be B′ where xk is replaced by xj .

Before we begin the next pivot step, we must compute (AB′)−1. Here, let I be the combination
of B and B′: all the previously basic variables, together with j.

To do this, find the row reduction steps that take (AB)
−1AI (which should have pivots in B’s

columns) to (AB′)−1AI (which should have pivots in B′’s columns).

Then, apply those steps to (AB)
−1 to get (AB′)−1.

2.4 One more pivot step

Let’s do another pivot step for this problem. Everything will now be in terms of the basis
(4, 7).

1. We calculate (A(4,7))
−1b =

[
5
3 −1

3

−2
3

1
3

][
30

100

]
=

[
50
3
40
3

]
and

uT = (c(4,7))
T(A(4,7))

−1 =
[
5 0

] [ 5
3 −1

3

−2
3

1
3

]
=

[
25
3 −5

3

]
.

2. To determine the entering variable, we compute the reduced costs, one at a time. We can
skip x1, since it was just the leaving variable, so we start with x2:

c2 − uTA2 = 1−
(
25

3
· 1− 5

3
· 3
)

= −7

3
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c3 − uTA3 = 3−
(
25

3
· 1− 5

3
· 1
)

= −11

3

c5 − uTA5 = 2−
(
25

3
· 1− 5

3
· 4
)

=
1

3
.

Since c5 has a positive reduced cost, it will be our entering variable.

3. To find the leaving variable, we compute (A(4,7))
−1A5 =

[
5
3 −1

3

−2
3

1
3

][
1

4

]
=

[
1
3
2
3

]
.

Both rows are positive, so both x4 and x7 are on our shortlist of leaving variables. Their
current values in the basic solution are given by (A(4,7))

−1b: they’re 50
3 and 40

3 . The ratio is
50/3
1/3 = 50 for x4 and 40/3

2/3 = 20 for x7, so x7 leaves the basis.

4. We are turning the basis (4, 7) into (4, 5). To compute the new inverse matrix (A(4,5))
−1, we

want to find the row reduction that takes

(A(4,7))
−1A(4,5,7) =

[
1 1

3 0

0 2
3 1

]
⇝ (A(4,5))

−1A(4,5,7) =

[
1 0 ?

0 1 ?

]
.

To get there, we must multiply the second row by 3
2 (to turn the 2

3 into 1) and then subtract
1
3 of that from the first row (to turn 1

3 into 0). So let’s do the same things to (A(4,7))
−1:

(A(4,7))
−1 =

[
5
3 −1

3

−2
3

1
3

]
⇝ (A(5,7))

−1 =

[
2 −1

2

−1 1
2

]

We are ready for our next pivot step.

3 Lessons learned

The revised simplex method might be obnoxious to do by hand (and I don’t encourage it, except
to make sure that it makes sense). But there’s a few reasons to do what we’ve done today:

• We can carefully think about the number of operations required for the simplex method, and
how it scales with the number of variables and number of equations.

• Our concerns when designing the revised simplex method—we were kind of worried about
multiplying (AB)

−1AN , and we were really worried about computing (AB)
−1—are common

to many algorithms. You are unlikely to have to write computer code to implement the
revised simplex method; however, it is much more important to understand what operations
are cheap, what operations are expensive, and how we can avoid the expensive ones.

Later in the semester, the dictionary formulas from the beginning of the lecture will also be put to
new, unexpected uses.
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