
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 11: Worst cases for the simplex method

September 20, 2022 Kennesaw State University

1 The terrible trajectory

What is the worst case for the simplex method? How many pivoting steps do we need?

Today, we’ll show that for all the pivoting rules we know, the worst case is pretty bad: we can cook
up a linear program with only d variables and 2d constraints in which we take around 2d steps.
This is approximately as bad as it could possibly get, since there are at most

(
2d
d

)
< 4d possible

basic solutions for such a linear program.

First, consider the following linear program (whose feasible region forms a d-dimensional hyper-
cube):

maximize
x∈Rd

xd

subject to 0 ≤ x1 ≤ 1

0 ≤ x2 ≤ 1

...

0 ≤ xd ≤ 1

This is not actually the worst case for the simplex method, under any reasonable pivoting rule.
The initial basic feasible solution is x = 0, the only variable with positive reduced cost is xd, and
pivoting on xd gets us to an optimal solution within one step. But tiny modifications will make it
much much worse!

First of all, there are some really inefficient trajectories possible in theory: paths we can take going
from (0, 0, . . . , 0, 0) to (0, 0, . . . , 0, 1) that visit every other vertex of the hypercube in between. Here
is an illustration of such a path in the 3-dimensional case (when the feasible region is a cube):

•

•

•

•

•

•

•

•

(0,0,0)

(1,0,0)

(1,1,0)

(0,1,0)

(0,1,1)

(1,1,1)

(1,0,1)

(0,0,1)

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022


We’ll call this path the “terrible trajectory”. (Despite the alliteration, this is not established
terminology.) The terrible trajectory has a fairly simple recursive definition: to follow it in d-
dimensions, first follow the (d − 1)-dimensional terrible trajectory (keeping xd = 0), then change
xd to 1, then follow the (d− 1)-dimensional terrible trajectory again, but in reverse.

Second, note that this trajectory is actually kind of close to being reasonable for the linear program
we want to solve. Every single step of the terrible trajectory is neutral with respect to the objective
value (it does not change xd), except for one step, which increases it. So it’s possible that if we push
the corners around a bit, then every single step of the terrible trajectory will increase the objective
value. And at that point, we’re close to tricking the simplex method into following it.

2 Tricking Bland’s rule

“Easy mode” is tricking Bland’s rule into following the terrible trajectory. To make this happen,
we modify the linear program as follows:

maximize
x∈Rd

xd

subject to 0.1 ≤ x1 ≤ 1− 0.1

0.1x1 ≤ x2 ≤ 1− 0.1x1

0.1x2 ≤ x3 ≤ 1− 0.1x2
...

0.1xd−1 ≤ xd ≤ 1− 0.1xd−1

The value 0.1 could be replaced by any reasonably small constant. The smaller we make it, the
closer we get to the original cube, and if we set it to 0, we just get back that cube.

Here’s what the terrible trajectory looks like for this linear program, in 3 dimensions. (It’s a bit of
a lie, because with the modification, the feasible region is no longer a perfect cube.)

•

•

•

•

•

•

•

•

(0.1,0.01,0.001)

(0.9,0.09,0.009)

(0.9,0.91,0.091)

(0.1,0.99,0.099)

(0.1,0.99,0.901)

(0.9,0.91,0.909)

(0.9,0.09,0.991)

(0.1,0.01,0.999)

You can see that in this trajectory, the objective values steadily increase:

0.001 < 0.009 < 0.091 < 0.099 < 0.901 < 0.909 < 0.991 < 0.999.

It turns out that, with a natural choice of variable ordering, Bland’s rule will end up picking this
trajectory. Let’s first add slack variables to the problem, rewriting 0.1xi−1 ≤ xi ≤ 1 − 0.1xi−1

2



as {
0.1xi−1 − xi + w0

i = 0

0.1xi−1 + xi + w1
i = 1

Here, the superscript in w0
i and w1

i is not an exponent: it’s an extra index, since we have 2d slack
variables. To explain the naming convention: w0

i is the slack variable for the lower bound on xi,
and when w0

i = 0, xi is close to 0. Meanwhile, w1
i is the slack variable for the upper bound on xi,

and when w1
i = 0, xi is close to 1.

We have to use the two-phase simplex method for this problem, since 0 is not feasible, but let’s
skip ahead and suppose we arrive at the correct basic feasible solution we wanted: the corner point
(0.1, 0.01, . . . , 0.1d). Here, the variables x1, x2, . . . , xd are all basic—and they’ll stay basic forever,
because none of them can be 0. In order to start out at this corner point, our nonbasic variables
(corresponding to the tight constraints) must be w0

1, w
0
2, . . . , w

0
d; the slack variables w1

1, w
1
2, . . . , w

1
d

are basic.

In each of the basic feasible solutions we can encounter, exactly one of w0
i and w1

i is basic for each
i When xi ≈ 0, w0

i ’s constraint is tight, so w1
i is nonbasic. When xi ≈ 1, w1

i ’s constraint is tight, so
w1
i is nonbasic. Moving from one corner point to an adjacent one means pivoting so that w0

i enters
the basis and w1

i leaves for som i, or vice versa.

If we put the slack variables in the order

w0
1, w

1
1, w

0
2, w

1
2, . . . , w

0
d, w

1
d

then Bland’s rule will pivot on w0
1 or w1

1 whenever this improves the objective value, which is every
other step. In between those, it will pivot on w0

2 or w1
2 as often as possible, and so on. In 3

dimensions, the sequence of entering variables will be

w0
1, w

0
2, w

1
1, w

0
3, w

0
1, w

1
2, w

1
1

The pattern continues in higher dimensions: the subscripts will follow the sequence

1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 3, 1, 2, 1, 5, 1, 2, 1, 3, 1, 2, 1, . . . ,

which traces out the terrible trajectory.

To prove that this behavior continues in a bit more detail, consider that for as long as w0
d remains

nonbasic, xd will be stuck at 0.1xd−1, and so maximizing xd will be equivalent to maximizing
xd−1. This, together with the first d − 1 inequalities in our linear program, looks exactly like the
(d− 1)-dimensional linear program.

As long as pivoting makes sense in the (d − 1)-dimensional linear program, w0
d will not even be

considered as an entering variable, because it has the lowest priority. So we’ll follow the exact
same sequence of pivots as in d− 1 dimensions. After 2d−1 − 1 steps, we’ll end at the point where
w0
1, w

0
2, . . . , w

0
d−2 and w1

d−1 are nonbasic, and none of them are worth pivoting on.

That’s the first, and only, step at which we’ll pivot on w0
d. After we do, w1

d becomes nonbasic.
Now, instead of having xd = 0.1xd−1, we have xd = 1− 0.1xd−1, so maximizing xd is equivalent to
minimizing xd−1. So the simplex method will continue the first 2d−1 − 1 pivot steps in reverse: for

3



every step that made sense to maximize xd−1, undoing it now makes equal sense to minimize xd−1,
and has the same priority in our variable ordering.

After a total of (2d−1−1)+1+(2d−1−1) steps, we’ll finally reach the point where w0
1, w

0
2, . . . , w

0
d−1

and w1
d are nonbasic, which is our optimal solution.

3 The Klee–Minty cube

You may think that this example simply exploits a flaw in Bland’s rule (which, after all, does not
try very hard to pick a good pivot). But a famous linear program called the Klee–Minty cube
shows that the highest-cost pivoting rule is also vulnerable to the “terrible trajectory”.

The Klee–Minty linear program in d dimensions is given below (I’ve written the inequalities back-
wards to make the pattern easier to see):

maximize
x∈Rd

2d−1x1 + 2d−2x2 + · · ·+ xd

subject to 5 ≥ x1

25 ≥ 4x1 + x2

125 ≥ 8x1 + 4x2 + x3

625 ≥ 16x1 + 8x2 + 4x3 + x4
...

5d ≥ 2dx1 + 2d−1x2 + 2d−2x3 + · · ·+ 8xd−2 + 4xd−1 + xd

x1, x2, . . . , xd ≥ 0.

This is also shaped kind of like a hypercube in d dimensions (and a cube in 3 dimensions), but
it is very distorted. Here is a picture of the “terrible trajectory” for the Klee–Minty cube, with
coordinates given in the figure on the left, and their objective values on the right. (For this linear
program, the shape of the cube is an incredible lie, but the adjacencies between the corners are the
same.)

•

•

•

•

•

•

•

•

(0,0,0)

(5,0,0)

(5,5,0)

(0,25,0)

(0,25,25)

(5,5,65)

(5,0,85)

(0,0,125)

•

•

•

•

•

•

•

•

0

20

30

50

75

95

105

125

The best way to understand why this cube tricks the highest-cost rule is to try doing it, and see how
the reduced costs change. But essentially, this construction exploits a weakess of the pivoting rule
that we’ve already talked about: it’s sensitive to changes in units. To get the highest-cost rule to

4



pick earlier variables over later ones, it’s enough to set up the problem so that a very small change
in x1 or x2 has the same effect as a very large change in xd−1 or xd. However, the constraints
are set up so that the distance that it’s possible to go in the xd−1 or xd direction is always much
larger.

4 Closing remarks

4.1 Other pivoting rules

Other pivoting rules which we have not discussed exist. Some of them are slightly less vulnerable to
this strategy: for example, there is the “best neighbor” pivoting rule, which considers all possible
entering variables, and determines which one will lead to the greatest improvement in the objective
function.

The best neighbor pivoting rule cannot be fooled by any of the examples we saw today. After all,
in both examples, the optimal solution is within one pivot step of the starting solution. The best
neighbor pivoting rule will notice this and solve the problem in one step.

However, this does not mean that the best neighbor pivoting rule is always guaranteed to be
efficient. It’s possible to cook up examples in which it, too, takes an exponentially long time. If the
best neighbor pivoting rule is within one step of the optimal solution, it will work well; but if it’s
within two steps, and the first step does not look promising, the pivoting rule will remain happily
oblivious.

There are complicated pivoting rules out there which have a better worst case: on a linear program
with n inequalities and d variables, the number of pivot steps they take is bounded by functions

such as C
√
d logn for some constant C, which is better than exponential. But the upper bound we

dream of is “a polynomial function in n and d”, and it’s an open problem whether any pivoting
rule can achieve this.

4.2 The average case

Shouldn’t we forget all about the worthless simplex method now that we know the truth about its
worst-case behavior?

In fact, there are other algorithms for solving linear programs that are alternatives to the simplex
method, and have better worst-case guarantees on running time. But linear programming is the
one case where it turns out that the worst-case-exponential algorithm is better than the worst-case-
polynomial algorithm.

It is very unusual to encounter examples like the Klee–Minty cube, where it makes sense to pivot
on the same variable over and over and over and over again. One argument for this is that we don’t
encounter cases like this by generating linear programs at random, but this is not a particularly
strong argument: most linear programs we want to solve aren’t random!

Other studies have shown that the simplex method is efficient under smoothed analysis: when we
take any linear program and introduce a bit of random noise in the coefficients, the average result
is solved efficiently. (You can see how this would completely destroy our examples today, where
the behavior is very sensitive to comparisons between numbers like 0.0001 and 0.00001.)

5


	The terrible trajectory
	Tricking Bland's rule
	The Klee–Minty cube
	Closing remarks
	Other pivoting rules
	The average case


