
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 13: Duality

September 29, 2022 Kennesaw State University

1 An example of duality

Problem 1. You visit a chocolate factory and want to buy as much chocolate as you can. The
factory sells plain chocolate chips for $1 per pint and deluxe chocolate chips for $2 per pint. You can
only carry one pint of chocolate in your hands; if you want more, you’ll have to buy a bag. Empty
bags of all sizes are available; an empty 3-pint bag costs $4, and all other sizes cost a proportional
amount.

If you have $7, what is the largest amount of chocolate you can buy and take home with you?

Let x1 be the amount of plain chocolate chips and x2 the amount of deluxe chocolate chips, in
pints (so that we want to maximize x1 + x2). Let x3 be the number of 3-pint bags you buy (if it
is a fraction, we assume that you bought some other size of bag.) Then the amount of money you
brought limits these variables to x1 + 2x2 + 4x3 ≤ 7. Also, you can carry at most 1 + 3x3 pints of
chocolate, so x1 + x2 ≤ 1 + 3x3, or x1 + x2 − 3x3 ≤ 1.

In summary, we get the linear program below:

maximize
x1,x2,x3∈R

x1 + x2

subject to x1 + 2x2 + 4x3 ≤ 7
x1 + x2 − 3x3 ≤ 1

x1, x2, x3 ≥ 0

Today, we’re going to be too lazy to try to solve this linear program. Instead, we want to prove
some lower and upper bounds on the objective value of the solution.

Lower bounds for a maximization problem are easy to find.

• Setting x1 = x2 = x3 = 0 satisfies both constraints, so clearly we can’t do worse than an
objective value of 0.

• We could try tweaking that: say x1 = 1 and x2 = x3 = 0, then we get an objective value of 1.

• In general, any feasible solution gives us a lower bound on the objective value. If we wanted
to get good lower bounds this way, we’d start trying to solve the linear program, which we
said we didn’t want to do.

What about upper bounds? Well, here are some ideas:

• x1 + x2 is always less than or equal to x1 + 2x2 + 4x3. So if x1 + 2x2 + 4x3 ≤ 7, we can
immediately conclude x1 + x2 ≤ 7.
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• Note that we can’t conclude from x1+x2− 3x3 ≤ 1 that x1+x2 ≤ 1, because the −3x3 term
could potentially make x1 + x2 − 3x3 a lot smaller than x1 + x2.

• However, if we average the two constraints, we get an improvement:

1

2
(x1 + 2x2 + 4x3) +

1

2
(x1 + x2 − 3x3) ≤

1

2
(7 + 1) =⇒ x1 +

3

2
x2 +

1

2
x3 ≤ 4

and we always have x1 + x2 ≤ x1 +
3
2x2 +

1
2x3, so we conclude that x1 + x2 ≤ 4.

More generally, we could try to combine the two constraints with any coefficients. As long as u1 ≥ 0
and u2 ≥ 0, we can try to combine the inequalities with weights u1 and u2 to get

u1(x1 + 2x2 + 4x3) + u2(x1 + x2 − 3x3) ≤ 7u1 + u2.

Rearranging the inequality to group the x1, x2, and x3 terms together, we get

(u1 + u2)x1 + (2u1 + u2)x2 + (4u1 − 3u2)x3 ≤ 7u1 + u2.

This is a valid inequality, but not necessarily a useful one. We want the left-hand side to be an
upper bound on x1+x2 if we want to apply the same logic that we did earlier. For this to happen,
the coefficients of x1 and x2 must be at least 1, and the coefficient of x3 must be nonnegative. This
gives us three constraints on u1 and u2 in order for 7u1 + u2 to be an upper bound.

What is the best upper bound we can find by combining the inequalities in this way? The answer
can be found by solving a different linear program in terms of u1 and u2:

minimize
u1,u2∈R

7u1 + u2

subject to u1 + u2 ≥ 1
2u1 + u2 ≥ 1
4u1 − 3u2 ≥ 0

u1, u2 ≥ 0

2 Weak duality

In matrix form, we can write our constraints in the original problem as Ax ≤ b, where

A =

[
1 2 4
1 1 −3

]
b =

[
7
1

]
.

The combined inequality u1(x1+2x2+4x3)+u2(x1+x2−3x3) ≤ 7u1+u2 can be written in matrix
form as [

u1 u2
] [1 2 4

1 1 −3

]x1x2
x3

 ≤
[
u1 u2

] [7
1

]
.

In matrix notation: starting from Ax ≤ b, we deduced that uTAx ≤ uTb. (As a reminder,
combining these inequalities in this way is only valid provided that u ≥ 0.)

We don’t just want to deduce valid inequalities: we want to deduce useful inequalities. We want
the coefficients of x1, x2, x3 on the left-hand side to be at least as big as the coefficients of x1, x2, x3
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in the objective function x1 +x2, so that we get an upper bound on x1 +x2. The three constraints
u1 + u2 ≥ 1, 2u1 + u2 ≥ 1, and 4u1 − 3u2 ≥ 0 can be written in matrix form as[

u1 u2
] [1 2 4

1 1 −3

]
≥

[
1 1 0

]
.

If cT =
[
1 1 0

]
is the cost vector in our objective function, then these constraints can be written

as uTA ≥ cT. (We can also take the transpose of both sides, and write ATu ≥ c.) You can see that
in the two linear programs we wrote down in the previous section, the matrix of coefficients of u is
the transpose of the matrix of coefficients of x.

We can do this for any linear program. Write down a general linear program in the form

(P)


maximize

x∈Rn
cTx

subject to Ax ≤ b

x ≥ 0

where A is an m× n matrix, b ∈ Rm, and c ∈ Rn. The linear program of “what is the best upper
bound we can deduce on (P) by taking a linear combination of its inequalities?” is called the dual
linear program, and has the form below:

(D)


minimize

u∈Rm
uTb

subject to uTA ≥ cT

u ≥ 0

⇐⇒

minimize
u∈Rm

bTu

subject to ATu ≥ c

u ≥ 0

(When (D) is the dual linear program of (P), we call (P) the primal linear program.)

The dual linear program above is written in two forms. On the right, we took the transpose of both
sides, putting it into a form more usual for linear programs. But when we think about the dual
relationship between (P) and (D), it’s more convenient to use the formulation on the left, because
then the dual program is distinguished by being in terms of a row vector uT instead of a column
vector u.

The reasoning by which (D) gives upper bounds for (P) holds in general. Formally, this relationship
is called weak duality, and is summarized in the theorem below:

Theorem 1 (Weak duality of linear programs). For any x ∈ Rn which is feasible for the primal
linear program (P) (or primal feasible) and for any u ∈ Rm which is feasible for the dual linear
program (D) (or dual feasible), we have cTx ≤ uTb.

In particular, the objective value of the dual optimal solution is an upper bound for the objective
value of the primal optimal solution (assuming both optimal solutions exist).

Proof. Since x is primal feasible, we have Ax ≤ b. Since u is dual feasible, we have u ≥ 0.
Therefore the inequality uTAx ≤ uTb is valid: we have multiplied the inequalities in Ax ≤ b by
nonnegative coefficients u1, . . . , um and added them together.

Since u is dual feasible, we have uTA ≥ cT. Since x is primal feasible, we have x ≥ 0. By the
same logic as above, we can deduce that uTAx ≥ cTx: again, we have multiplied the inequalities
in uTA ≥ cT by nonnegative coefficients x1, . . . , xn, then added them together.
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Putting these together, we get cTx ≤ uTAx ≤ uTb, so cTx ≤ uTb.

3 Duals of other kinds of programs

So far we’ve discussed starting with a primal program that’s a maximization problem with non-
negative variables and an Ax ≤ b constraint. Duality is more general than this: it can handle any
kind of linear program. The only thing that never changes is that

Variables in one program correspond to constraints in the other.

Just to give a few examples of how things change:

• Suppose that we drop the requirement that x1 ≥ 0 in our original linear program. (We can
buy negative chocolate chips, which have negative weight and cost negative money.)

As before, an expression such as 1
2x1 + 2x2 is not an upper bound on x1 + x2, because

1
2x1

might be less than x1: if x1 is large and x2 is small, then 1
2x1 +2x2 < x1 + x2. However, this

time, an expression such as 2x1 + 2x2 is also not an upper bound on x1 + x2: if x1 is a large
negative number, then 2x1 < x1.

So we see that in any inequality which gives an upper bound on x1 + x2, the coefficient of x1
has to be exactly 1. Our inequality u1 + u2 ≥ 1 would become u1 + u2 = 1.

In general, an unconstrained variable gives us = constraints in the dual linear program.

• Suppose that we reverse the first constraint to say x1 + 2x2 + 4x3 ≥ 7. (We have unlimited
money and must spend at least $7 of it.)

In this case, if we still want upper bounds on some expression in terms of x1 and x2, we
have to multiply this constraint by a negative coefficient to reverse the inequality. Instead of
wanting u1 ≥ 0, we’d want u1 ≤ 0.

In general, a ≥ constraint gives us a nonpositive variable in the dual linear program.

• Suppose that the primal program asks to minimize x1 + x2 instead of maximizing it.

This changes everything, because now we are trying to get lower bounds instead of upper
bounds. In particular, the relationship between (P) and (D) is reversed: a feasible solution
for (P) will always have a greater or equal objective value compared to a feasible solution
for (D).

Now ≤ constraints in (P) correspond to nonnegative variables in (D) (they are the “natural”
kind of constraint when we’re minimizing) and ≥ constraints in (P) correspond to nonpositive
variables in (D).

Actually, the relationship between (P) and (D) is symmetric: if (D) is the dual of (P), then (P)
is the dual of (D). It’s easiest to describe the duality relationship as a relationship between a
maximization problem and a minimization problem, never mind which one of them was the primal
and which was the dual.

With that in mind, here is the complete list of possible correspondences betwene a constraint in
one problem and a variable in the other:
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Maximization problem Minimization problem

≤ constraint variable ≥ 0

= constraint unconstrained variable

≥ constraint variable ≤ 0

variable ≥ 0 ≥ constraint

unconstrained variable = constraint

variable ≤ 0 ≤ constraint

Memorizing the rules in the table is possible, but it probably isn’t very satisfying. It is healthier
to practice figuring out the correspondence for yourself, by asking the questions in the examples
above: how can we combine the constraints of the primal problem to get bounds on its optimal
value, of whichever kind makes sense?

4 Strong duality

4.1 A stronger theorem

In fact, a stronger relationship between (P) and (D) holds, which is appropriately enough called
strong duality. It says that:

Theorem 2 (Strong duality of linear programs). If either one of (P) or (D) has an optimal
solution, then so does the other one. The objective values of the optimal solutions are equal.

In other words, the dual program is good at finding bounds on the primal program: the best bound
it finds is exactly correct.

We have not yet proved strong duality. (We will see a proof later.)

However, keep in mind the word “if” at the beginning of this theorem. We are not guaranteed that
a linear program has an optimal solution: it could be unbounded, or infeasible!

In fact, just from weak duality, we can already deduce a relationship between unbounded and
infeasible linear programs.

• Suppose that (P) has a feasible solution x. Then we know that for every dual feasible u, we
have cTx ≤ uTb. Therefore uTb cannot be arbitrarily low: it is bounded below by whatever
cTx is. So (D) cannot be unbounded.

Conversely, if (D) is unbounded, it tells us that (P) is infeasible.

• By similar reasoning, any dual feasible u proves that (P) cannot be unbounded. Therefore
if (P) is unbounded, (D) must be infeasible.

(It is also possible for both (P) and (D) to be infeasible in exceptionally unfortunate cases.)

4.2 Examples with infeasible primal and dual

Here are some very simple examples that illustrate all three possibilities where (P) or (D) is
infeasible. (I have labeled each constraint in one program with the corresponding variable in the
other program, which we’re going to keep doing in the future for all our primal-dual pairs.)
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In the pair

(P)


maximize

x∈R
x

subject to x ≤ −1 (u)

x ≥ 0

(D)


minimize

u∈R
−u

subject to u ≥ 1 (x)

u ≥ 0

the primal program is infeasible (we can’t have x ≤ −1 and x ≥ 0 at the same time) and the dual
program is unbounded (by setting u to be very large, we make −u very small).

We can get an example where the primal program is infeasible and the dual program is unbounded
simply by reversing the roles of the two programs. Or, if we want to keep (P) a maximization
problem and (D) a minimization problem, we could do a slight variant of the example above:

(P)


maximize

y∈R
y

subject to −y ≤ 1 (v)

y ≥ 0

(D)


minimize

v∈R
v

subject to −v ≥ 1 (y)

v ≥ 0

Here, any nonnegative y is primal feasible, but no v is dual feasible.

To get an example where both linear programs are infeasible, just combine these two exam-
ples:

(P)


maximize

x,y∈R
x+ y

subject to x ≤ −1 (u)

−y ≤ 1 (v)

x, y ≥ 0

(D)


minimize

u,v∈R
−u+ v

subject to u ≥ 1 (x)

−v ≥ 1 (y)

u, v ≥ 0

Here, the primal is infeasible because we can’t choose a value of x, and the dual is infeasible because
we can’t choose a value of v.
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