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1 Finding the dual solution from the dictionary

In the previous lecture, we discussed complementary slackness, which lets us find the optimal
dual solution given the optimal primal solution. This still involves a little bit of work solving the
equations.

In practice, we might have an optimal dictionary and not just an optimal primal solution. If this
is the case, then there is a more concrete expression we can give for the dual solution. Actually,
there are two ways to find the dual solution:

• one general way that always works;

• one very quick method that works for linear programs that started in Ax ≤ b form and added
slack variables.

1.1 A general formula

The simplex method is applied to problems in equational form. Our dual in this case looks like the
following, with u unconstrained (each ui can be positive or negative):

(P)


maximize

x∈Rn
cTx

subject to Ax = b

x ≥ 0

(D)

minimize
u∈Rm

uTb

subject to uTA ≥ cT

Recall that we have a formula for the dictionaries we get through the simplex method. If we choose
basic variables B and nonbasic variables N , then the corresponding dictionary is

ζ = uTb +
(
(cN )T − uTAN

)
xN

xB = (AB)
−1b− (AB)

−1ANxN

where uT = cB
T(AB)

−1. It is not a coincidence that the vector u used in this formula was given
the same letter as the vector u we are using for the dual solution: they are the same!

More precisely, suppose that we have achieved an optimal dictionary for maximizing cTx. This
means that our reduced costs are all less than or equal to 0: we have no variables left worth pivoting
on. In other words, (cN )T − uTAN ≤ 0, or uTAN ≥ (cN )T. This looks a lot like the constraints in
(D): more precisely, it is the constraints, but only the ones indexed by N .

What about the constraints indexed by B? These constraints correspond to the basic variables,
which are probably positive in our optimal solution, so we expect them to be satisfied with equality:
we expect that uTAB = (cB)

T. This is also true, since uT = (cB)
T(AB)

−1.

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022
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1.2 Strong duality

The formula we’ve just found has a theoretic use and not just a practical one. We can use it to
show that when (P) has an optimal solution x, the dual solution u we find satisfies uTb = cTx:
the primal and dual solutions have the same objective value. To prove this, we need to remember
our formula for the primal optimal solution we read off from the dictionary: we set xN = 0, and
get xB = (AB)

−1b. Therefore

cTx = (cB)
TxB + (cN )TxN = (cB)

T(AB)
−1b+ (cN )T0 = uTb.

This is a proof of strong duality in a special case:

Theorem 1 (Strong duality). Whenever (P) has an optimal solution x, it is also true that (D)
has an optimal solution uT with the same objective value.

The general case of strong duality can be deduced from this one, since all linear programs can be
put into equational form. (The proof is not automatic, since when we have a linear program in two
forms, its dual also has two forms, so optimal dual solutions also look different. We would need
to check that the dual solution we got from the simplex method can be used to “recover” a dual
solution for the dual of the original linear program.)

1.3 A special case

It is worthwhile to look at one other case for (P): where we start with inequalities Ax ≤ b, and add
slack variables to put it in equational form. Written as a matrix equation, the equational form of
Ax ≤ b is Ax+ Iw = b. Something silly happens with the dual when we make this change:

(P)


maximize
x∈Rn,w∈Rm

cTx

subject to Ax+ Iw = b

x,w ≥ 0

(D)


minimize

u∈Rm
uTb

subject to uTA ≥ cT

uT ≥ 0T

When we add slack variables, (D) still has nonnegativity constraints on u, but instead of being
treated separately as nonnegativity constraints, they are simply the constraints corresponding to
the primal variables w.

Looking at our dictionary formula, we can notice that if xi is a nonbasic variable, then its reduced
cost xi is given by ci−uTAi: the right-hand side of the dual constraint corresponding to xi, minus
the left-hand side of that constraint. This is also true if xi is a basic variable, assuming that we
consider the reduced cost of a basic variable to be 0.

What if we do this for a slack variable? The dual constraint corresponding to slack variable wi is
just the constraint ui ≥ 0. The right-hand side minus the left-hand side is just equal to −ui. So
we deduce a simplified rule for finding uT:

Theorem 2. If (P) started out in the inequality form Ax ≤ b, then an optimal solution u for (D)
can be read off from the optimal dictionary for (P) by taking the negatives of the reduced costs of
the slack variables.
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1.4 Examples

Let’s start with an example in equational form. Take the following primal-dual pair:

(P)


maximize

x∈R4
x1 + 2x3 − x4

subject to x1 + x2 + x3 + x4 = 4 (u1)
x1 + 2x2 + 3x3 + 4x4 = 10 (u2)

x1, x2, x3, x4 ≥ 0

(D)



minimize
u1,u2∈R

4u1 + 10u2

subject to u1 + u2 ≥ 1 (x1)
u1 + 2u2 ≥ 0 (x2)
u1 + 3u2 ≥ 2 (x3)
u1 + 4u2 ≥ −1 (x4)

To get started finding the optimal dual solution, it’s enough for me to tell you that in the optimal
primal solution, x1 and x3 are basic; you don’t even need to know what their values are! Then we
use the formula uT = (cB)

T(AB)
−1 to compute

[
u1 u2

]
=

[
1 2

] [1 1
1 3

]−1

=
[
1 2

] [ 3
2 −1

2
−1

2
1
2

]
=

[
1
2

1
2

]
.

Therefore (u1, u2) = (12 ,
1
2) is the optimal solution.

Now let’s look at an example with slack variables. Here, we’ll actually need to know the optimal
dictionary; on the other hand, we will not have to do matrix inverse calculations. Take the following
example:

(P)



maximize
x,y∈R

2x+ 3y

subject to −x+ y ≤ 3 (u1)
x− 2y ≤ 2 (u2)
x+ y ≤ 7 (u3)
x, y ≥ 0

(D)


minimize
u1,u2,u3∈R

3u1 + 2u2 + 7u3

subject to −u1 + u2 + u3 ≥ 2 (x)
u1 − 2u2 + u3 ≥ 3 (y)

u1, u2, u3 ≥ 0

We add slack variables to (P), solve it, and end up at the following optimal dictionary:

max ζ = 19− 1
2w1 − 5

2w3

x = 2 + 1
2w1 − 1

2w3

y = 5− 1
2w1 − 1

2w3

w2 = 10− 3
2w1 − 1

2w3

The reduced costs of w1 and w3 are −1
2 and −5

2 , telling us that in the dual optimal solution, u1 =
1
2

and u3 =
5
2 . What about w2? It’s a basic variable, so its reduced cost is automatically 0. Therefore

(u1, u2, u3) = (12 , 0,
5
2) is an optimal solution to (D).

2 The dual simplex method

It would be fair to complain: in all of these examples, once we’ve solved (P), why do we care about
the values of (D)? We will see some meaning to those values in future lectures. Today, we will
look at a surprising use that the dual solution has, even when we don’t care what it is.
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Here (on the left) is a linear program we looked at earlier in the semester:

minimize
x1,x2∈R

4.5x1 + 3x2

subject to x1 + x2 ≥ 5
3x1 + x2 ≥ 7
x1 + 2x2 ≥ 6
x1, x2 ≥ 0

min ζ = 0 + 4.5x1 + 3x2
w1 = −5 + x1 + x2
w2 = −7 + 3x1 + x2
w3 = −6 + x1 + 2x2

On the right is a very bad initial dictionary for it. It is not feasible: every single basic variable has
a negative value!

But let’s look at the bright side: all the reduced costs are positive! This is just what we want to see
in a minimization problem. It would indicate that we’ve found an optimal solution. . . if it weren’t
for that pesky “not actually feasible” problem. . .

Now that we know about finding dual solutions from the dictionary, we know that these reduced
costs are exactly the information we need to know that the dual solution we can extract from it
is feasible. More precisely, the dual solution here has (u1, u2, u3) = (0, 0, 0); the dual constraints
are u1 + 3u2 + u3 ≤ 4.5 and u1 + u2 + 2u3 ≤ 3, and they are satisfied with a slack of 4.5 and 3,
which are precisely the reduced costs in our dictionary. Our “optimal-but-not-feasible” solution to
the primal corresponds to a feasible (but not optimal) dual solution!

The dual simplex method takes this idea and runs with it. Call a dictionary dual feasible if all
the reduced costs are the correct sign for optimality. We will start with a dual feasible dictionary,
and do pivot steps that preserve dual feasibility, while getting the dictionary closer to ordinary
(primal) feasibility. To do this, the overall strategy is: choose a basic variable whose value is
negative to leave the basis, then choose an entering variable so that dual feasibility is
preserved.

In this example, we’re spoiled for choice in leaving variables: all three of w1, w2, w3 are negative.
Let’s pick w1 for no good reason. Meanwhile, we don’t know how to choose an entering variable
yet, so let’s try both. Here are the two dictionaries we can get if either x1 (left) or x2 (right) enters
the basis:

min ζ = 22.5 + 4.5w1 − 1.5x2
x1 = 5 + w1 − x2
w2 = 8 + 3w1 − 2x2
w3 = −1 + w1 + x2

min ζ = 15 + 1.5x1 + 3w1

x2 = 5− x1 + w1

w2 = −2 + 2x1 + w1

w3 = 4− x1 + 2w1

Choosing x1 is bad: we end up losing dual feasibility. On the other hand, dual feasibility is preserved
if we pivot on x2. What are the rules we have to follow to make this decision in general?

1. First, we have to pick an entering variable with a positive coefficient in the leaving
variable’s equation. In this example, both x1 and x2 had this property, so we didn’t
notice.

The reason for this rule is to make sure that our leaving variable ends up with the correct
sign of reduced cost. When we did the substitution of either x1 or x2 in ζ’s equation, the old
reduced cost was multiplied by the coefficient of w1, so that coefficient had to be positive.

This is our “shortlist for entering variables”, analogous to the “shortlist for leaving variables”
in the ordinary simplex method.
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2. When multiple entering variables satisfy this property, we should compare ratios. Specifically,
we compute the ratio

reduced cost of variable

coefficient in leaving variable’s row

and choose the entering variable with the smallest ratio. This is the calculation we get if we
track what happens to the reduced costs of other variables, and make sure that they stay
positive.

In a maximization problem, dual feasibility means negative reduced costs, and we want to
keep them negative. In that case, all these ratios will be negative, and we want to pick the
least negative ratio (the one closest to 0). In other words, if we take absolute values first, the
rule stays the same.

Let’s do another pivot from the dictionary where x2 is a basic variable. The only negative basic
variable in that dictionary is w2, so let’s make w2 the leaving variable to fix that. In the equation
w2 = −2 + 2x1 + w1, both x1 and w1 have positive coefficients. We compute the ratios: x1’s ratio
is 1.5

2 = 0.75 and w1’s ratio is 3
1 = 3. This means x1 should be our entering variable, since its ratio

is smaller.

Our new dictionary is
min ζ = 16.5 + 0.75w2 + 2.25w1

x2 = 4− 0.5w2 + 1.5w1

x1 = 1 + 0.5w2 − 0.5w1

w3 = 3− 0.5w2 + 2.5w1

and it is both feasible and dual feasible. So we’ve found the optimal solution! It is (x1, x2) = (1, 4)
with objective value 16.5.

We will see many uses of the dual simplex method in the future, but there is one practical use we
can see directly from this example. If we used the ordinary simplex method, we would have had to
do two phases, because we don’t have an initial basic feasible solution! Meanwhile, we do have a
initial basic solution which is dual feasible, so the dual simplex method is easier to start.

Under the hood, the dual simplex method is actually applying the simplex method to the dual
linear program. However, we don’t have to know that to know what is going on: we don’t have to
know what the dual constraints are, or the values of the dual variables.
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