
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 16: Applications of the dual simplex method

October 11, 2022 Kennesaw State University

1 Example: another look at a terrible cube

With the dual simplex method in our toolbox, there are now twice as many linear programs that
we can solve in one phase. Suppose we have a linear program with constraints Ax ≤ b, for which
we decide to write down an initial dictionary where the slack variables are basic. Then:

• Provided b ≥ 0, this initial dictionary is feasible, and so we can use the ordinary simplex
method.

• Provided we are minimizing cTx where c ≥ 0 (or, equivalently, maximizing cTx where c ≤ 0),
this initial dictionary is dual feasible, and so we can use the dual simplex method.

Together, these two cases cover many practical examples, but we’ve already seen problems that
don’t fit in either category. For example, take the linear program below, which is the 3-dimensional
version of the problem we used to make Bland’s rule take exponentially many steps:

maximize
x1,x2,x3∈R

x3

subject to 0.1 ≤ x1 ≤ 1− 0.1
0.1x1 ≤ x2 ≤ 1− 0.1x1
0.1x2 ≤ x3 ≤ 1− 0.1x2

x1, x2, x3 ≥ 0

max ζ = 0 + x3
w1 = −0.1 + x1
w′
1 = 0.9− x1

w2 = 0− 0.1x1 + x2
w′
2 = 1− 0.1x1 − x2

w3 = 0 − 0.1x2 + x3
w3 = 1 − 0.1x2 − x3

If we write each pair of inequalities LB ≤ xi ≤ UB as LB + wi = xi and xi + w′
i = UB (where LB

and UB stand in for our various creative lower and upper bounds on xi) then we can write down
an initial dictionary in terms of six slack variables. But this dictionary is neither feasible (since
w1 < 0) nor dual feasible (since the reduced cost of x3 is positive).

We could handle this using a two-phase method where we add an artificial variable. But let’s see
a different method of accomplishing the same thing.

2 The two-phase dual simplex method

2.1 The plan

Just like our earlier two-phase methods, the two-phase dual simplex method involves solving a
phase one problem before we get to the problem we actually want to solve. But this method is
much more economical: though it will require an auxiliary objective function, we will not need to
add any new variables or constraints.

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022

The logic is this: dual feasibility only depends on the objective function, and not on the constraints.
So if we replace our original objective function by an auxiliary objective function, we can choose
that auxiliary objective function to make our dictionary dual feasible! Then, we can apply the dual
simplex method and solve that phase one problem.

Of course, in the phase one problem, we’ll be optimizing something completely unrelated to what
we actually want. This doesn’t matter: once the phase one problem is solved, we’ll have a dic-
tionary that’s both feasible and dual feasible. Now, replace the auxiliary objective function by
our original objective function. Unless we’re very lucky, the resulting dictionary won’t be dual
feasible—however, it will still be feasible, because we didn’t touch the constraints! Therefore we
can continue with the ordinary simplex method to solve the problem we actually care about.

What should our auxiliary objective function be? Anything we like, as long as it gives us a dual
feasible dictionary. In general, this means minimizing any linear expression with nonnegative
coefficients on all the nonbasic (non-slack) variables.

You might be tempted to go with the simplest such linear expression: minimize 0. This is a bad
choice, because the value of 0 doesn’t change as we pivot from basis to basis. This means that the
dual simplex method will constantly be doing “dual degenerate pivots”, and once again we have to
worry about cycling.

A simple choice that will work as well as any other in general is to minimize the sum of all the
nonbasic variables. If you’re worried about degeneracy, you could borrow from the lexicographic
pivoting rule and decide to minimize ϵ1x1 + ϵ2x2 + · · ·+ ϵnxn, where ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵn > 0. We
will not bother doing this in our examples.

2.2 Solving the example

Let’s try this on our example. Our auxiliary objective will be to minimize ξ = x1 + x2 + x3:

min ξ = 0 + x1 + x2 + x3
w1 = −0.1 + x1
w′
1 = 0.9− x1

w2 = 0− 0.1x1 + x2
w′
2 = 1− 0.1x1 − x2

w3 = 0 − 0.1x2 + x3
w3 = 1 − 0.1x2 − x3

Only one basic variable currently has a negative value: w1 = −0.1. The only variable with a
positive coefficient in w1’s equation is x1, so we have no choice in our pivot: x1 enters and w1

leaves. We get x1 = 0.1 + w1 when we solve for x1, and then we substitute that in the other rows,
getting

min ξ = 0.1 + w1 + x2 + x3
x1 = 0.1 + w1

w′
1 = 0.8− w1

w2 = −0.01− 0.1w1 + x2
w′
2 = 0.99− 0.1w1 − x2

w3 = 0 − 0.1x2 + x3
w3 = 1 − 0.1x2 − x3

2

Again, only one basic variable has a negative value: w2 = −0.01. The only variable with a positive
coefficient in w2’s equation is x2, so we still have no choice in our pivot: x2 enters and w2 leaves.
We get x2 = 0.01+0.1w1+w2 when we solve for x2, and then we substitute that in the other rows,
getting

min ξ = 0.11 + 1.1w1 + w2 + x3
x1 = 0.1 + w1

w′
1 = 0.8− w1

x2 = 0.01 + 0.1w1 + w2

w′
2 = 0.98− 0.2w1 − w2

w3 = −0.001− 0.01w1 − 0.1w2 + x3
w′
3 = 0.999− 0.01w1 − 0.1w2 − x3

Again, only one basic variable has a (barely) negative value: w3 = −0.001. And yet again, there
is only one choice of entering variable to replace w3 as a leaving variable: x3. When we pivot, we
solve for x3 and get x3 = 0.001+0.01w1+0.1w2+w3, leading us to the following dictionary:

min ξ = 0.111 + 1.11w1 + 1.1w2 + w3

x1 = 0.1 + w1

w′
1 = 0.8− w1

x2 = 0.01 + 0.1w1 + w2

w′
2 = 0.98− 0.2w1 − w2

x3 = 0.001 + 0.01w1 + 0.1w2 + w3

w′
3 = 0.998− 0.02w1 − 0.2w2 − w3

We are done with phase one! We don’t really care that we’ve optimized ξ, but the good news
for us is that the dictionary is feasible. When we replace the objective function with ζ = x3 =
0.001 + 0.01w1 + 0.1w2 + w3, it remains feasible:

max ζ = 0.001 + 0.01w1 + 0.1w2 + w3

x1 = 0.1 + w1

w′
1 = 0.8− w1

x2 = 0.01 + 0.1w1 + w2

w′
2 = 0.98− 0.2w1 − w2

x3 = 0.001 + 0.01w1 + 0.1w2 + w3

w′
3 = 0.998− 0.02w1 − 0.2w2 − w3

Now we are ready to maximize ζ, and if we like, we can use Bland’s rule and take the most ridiculous
number of steps possible to do it.

By the way, if you notice, the actual artificial objective function ξ never played a role in our
pivoting. This is not guaranteed to happen, but it’s not particularly surprising: if we want the
point (x1, x2, x3) = (0, 0, 0) to be dual feasible for ξ, then ξ will probably be minimized at some
point close to (0, 0, 0). This means that we shouldn’t stress out too much about our choice of ξ in
problems like this.

2.3 Problems in equational form

This strategy isn’t quite enough to deal with constraints of the form Ax = b where x ≥ 0.

For systems like this, we have a three-step procedure:

3

1. Begin by row-reducing the system: just the usual Gaussian elimination you learn in linear
algebra. You will end up solving the equations for some set of basic variables, which is not
particularly under your control.

2. Now add an auxiliary objective function to build a dual feasible dictionary out of the basic
solution you got. For example, this objective could be to minimize the sum of whichever
variables end up nonbasic after step 1.

Use the dual simplex method to solve this phase one problem.

3. From the optimal dictionary, replace the auxiliary objective function by whatever objective
function you originally wanted to optimize. As before, use the ordinary simplex method to
solve the phase two problem.

3 Warm starts and row generation

Problem 1. Once again, you’re in charge of a factory that produces gizmos, widgets, and doodads.
Let’s say you must produce at least 10 of each object a day, but you’re limited to using at most 2000
pounds of iron: it takes 10 pounds to make a doodad, 20 pounds to make a gizmo, and 30 pounds to
make a widget. You must maximize the profit: $20 per doodad, $30 per gizmo, and $30 per widget.

Let’s suppose you set up the problem (on the left), find the optimal dictionary (on the right), and
bring the optimal solution to your boss:

maximize
xd,xg ,xw∈R

20xd + 30xg + 40xw

subject to xd ≥ 10
xg ≥ 10

xw ≥ 10
10xd + 20xg + 30xw ≤ 2000

xd, xg, xw ≥ 0

max ζ = 3700− 10w2 − 20w3 − 2w4

w1 = 140− 2w2 − 3w3 − 0.1w4

xd = 150− 2w2 − 3w3 − 0.1w4

xg = 10 + w2

xw = 10 + w3

Your boss takes one look at the printout and says, “No, no, that won’t work. What kind of fool
doesn’t know that the doohickey will overheat if you run it for more than 10 hours a day? The table
is right there on the machine: you need the doohickey for 15 minutes per doodad and 5 minutes
per gizmo. Go fix this, I need the factory schedule yesterday!”

Do you have to start from scratch? No. Let’s take the new constraint and insert it into our final
dictionary. Okay, this takes a bit of work: the constraint is 15xd + 5xg ≤ 600, which we write as
w5 = 600− 15xd − 5xg for a new slack variable w5. But xd and xg are also basic, so we substitute
their equations in:

w5 = 600− 15(150− 2w2 − 3w3 − 0.1w4)− 5(10 + w2)

which simplifies to w5 = −1700+25w2+45w3+1.5w4. Now we can add that to our dictionary.

4

The new dictionary is
max ζ = 3700− 10w2 − 20w3 − 2w4

w1 = 140− 2w2 − 3w3 − 0.1w4

xd = 150− 2w2 − 3w3 − 0.1w4

xg = 10 + w2

xw = 10 + w3

w5 = −1700 + 25w2 + 45w3 + 1.5w4

which, of course, is no longer feasible: the doohickey constraint is not satisfied. (We’re trying to
use it for over 38 hours per day. Poor doohickey!) But the dictionary is still dual feasible, because
it started out dual feasible before we added the new constraint. So we can try to fix it with the
dual simplex method.

In this case, only a single step is required. The leaving variable must be w5. All three nonbasic
variables have positive coefficients, so we compare the ratios: 10

25 ,
20
45 , and

2
1.5 . The smallest ratio is

10
25 , so w2 is the entering variable. After one pivot step, we get:

max ζ = 3020− 2w3 − 1.4w4 − 0.4w5

w1 = 4 + 0.6w3 + 0.02w4 − 0.08w5

xd = 14 + 0.6w3 + 0.02w4 − 0.08w5

xg = 78− 1.8w3 − 0.06w4 + 0.04w5

xw = 10 + w3

w5 = 68− 1.8w3 − 0.06w4 + 0.04w5

The point (xd, xg, xw) = (14, 78, 10) is our new optimal solution that takes doohickey usage into
account.

This is called solving the problem from a warm start: we start from a dictionary that was optimal
for a closely-related problem. There is no guarantee that a warm start will be faster than solving
the problem from scratch, and in particular, there is no guarantee that a single pivot step will be
enough, like it was here. However, in practice, it often seems to work well.

The situation where we forget about a constraint is contrived. Sometimes this situation occurs when
you have to solve a linear program for many similar problems. Suppose that the factory constraints
change a little every day; then always doing a warm start from the previous day’s optimal solution
might be a good idea.

A related concept is row generation,2 which we’ll see several times later this semester. Here,
we know in advance that our set of constraints is incomplete, but we don’t know which of many
possible constraints we’ll need. So we solve our linear program, then look at an optimal solution to
see if it violates any constraints we left out. (The way this is done depends on the exact application,
and often involves techniques outside linear programming.) Then, we add some missing constraint
and use the dual simplex method to continue.

2Note: the term “row generation” is often used specifically for a technique called Benders decomposition, which
is one particular example of the general idea.

5

	Example: another look at a terrible cube
	The two-phase dual simplex method
	The plan
	Solving the example
	Problems in equational form

	Warm starts and row generation

