
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 22: The integral flow theorem

November 1, 2022 Kennesaw State University

1 Consequences of the Ford–Fulkerson method

In the previous lecture, we saw a method for solving maximum flow problems. Just from the way
our method works, there are several things we can deduce about these solutions.

Theorem 1 (Max-flow min-cut theorem). The maximum value of a flow in any network is equal
to the minimum capacity of any cut.

Proof. When the Ford–Fulkerson method finishes computing the maximum flow in a network, it
ends by finding a cut whose capacity is equal to the value of the resulting flow: that’s how we know
that we’ve found the optimal solution.

There are many combinatorial applications of the max-flow min-cut theorem. (Menger’s theorem
in graph theory is one notable example; it is fairly difficult to prove directly, but can be deduced
quickly from this theorem. There are many applications in graph theory, most of which we will not
see, just because it would take us too far out of the scope of this class.)

But how do these combinatorial applications work? The flow along an arc is a continuous value, but
combinatorial problems often have discrete solutions: for example, we will see some applications
where objects are being sorted into categories, and something can’t be split halfway between multi-
ple categories. So there is a second theorem that’s important to applying maximum-flow problems
in such cases:

Theorem 2 (Integral flow theorem). If all capacities in a network are integers, then the network
has an integer maximum flow. (That is, there is a maximum flow x such that for every arc (i, j),
the flow xij is an integer.)

Proof. This result comes from thinking about how the Ford–Fulkerson method finds a maximum
flow. We repeatedly find an augmenting path, then identify the minimum residual capacity of any
of its arcs, and then increase or decrease the flow of those arcs by that residual capacity.

As long as we have an integer flow x, every residual capacity will also be an integer: the residual
capacity of any arc in the residual graph is given by either xij or cij − xij , and both of those will
have integer values. So in the next step, several of the xij ’s will change by an integer value, which
means that the next flow will also be an integer flow. That means that when the Ford–Fulkerson
method finishes, the values of x will still all be integers.

It appears that the linear program for the maximum flow problem is quite special. First, we found
out that the dual program has integer optimal solutions (which describe cuts, and not some weird

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022


fractional analog of cuts). Now we are seeing that the primal program also has integer optimal
solutions!

Although we have already shown that this is true, the first thing we’ll do today will be to give
another proof of this fact—one that relies on just thinking about the properties of the maximum
flow linear program. This is useful to know, because it can guarantee integer solutions to some other
problems as well. After that, we will see some applications of maximum flow problems, including
ones where the integrality plays a key role.

2 Totally unimodular matrices

Let’s back up a bit and consider a general linear program, with constraints Ax = b. We’ve seen
earlier in the semester that a basic solution to this system, where the basic variables are indexed by
B and the nonbasic variables are indexed by N , is given by xB = (AB)

−1b (with xN = 0). What
new things can we learn from this?

You might remember the formula for the inverse of a 2× 2 matrix:[
a b
c d

]−1

=
1

ad− bc

[
d −b
−c a

]
The important thing to notice about this formula is that the only number we divide by is ad− bc:
the determinant of the matrix. This continues for larger matrices; for example, for 3× 3 matrices,
we have a b c

d e f
g h i

−1

=
1

aei+ bfg + cdh− afh− bdi− ceg

ei− fh ch− bi bf − ce
fg − di ai− cg cd− af
dh− eg bg − ah ae− bd


and the big fraction in front is exactly the determinant of the matrix. In general, the inverse of an
n×n matrix A is equal to 1

det(A) multiplied by another matrix called the adjugate matrix, whose
entries are polynomial functions of the entries of A.

We do not need to know the details. Just knowing this much gives us a useful corollary:

Theorem 3. If A is an n×n matrix with integer entries, then A−1 has integer entries if and only
if det(A) = ±1.

Proof. If det(A) = ±1, then we conclude that A−1 has integer entries from formulas like the ones
above: we compute the adjugate matrix (which will have integer entries, because we multiply, add,
and subtract the entries of A) and divide by det(A) (which is 1 or −1, so it will not give us any
fractional results).

On the other hand, if A and A−1 both have integer entries, then det(A) and det(A−1) must both
be integers. But it’s always true that det(A−1) = 1

det(A) , because det(A) ·det(A−1) = det(AA−1) =

det(I) = 1. The only way that both det(A) and 1
det(A) can be integers is if det(A) = ±1.

We say that an m×n integer matrix A is unimodular if every m×m submatrix AB has det(AB) ∈
{−1, 0, 1}. This means that every time we have a basic solution to Ax = b, the inverse matrix

2



(AB)
−1 will have integer entries, by Theorem 3. As a result, when A is totally unimodular and b is

an integer vector, Ax = b will only have integer basic solutions. (We allow a determinant of 0 to
make a more general claim: this corresponds to m×m submatrices which can never give us basic
solutions anyway, since AB will not be invertible.)

An integer matrix A is totally unimodular if every square submatrix, of any size, has a deter-
minant of −1, 0, or 1. (Note that submatrices don’t have to pick consecutive rows or consecutive
columns. A valid 3 × 3 submatrix of a large matrix A might pick the 1st, 3rd, and 6th rows with
the 2nd, 9th, and 10th colums.

This definition allows us to generalize to basic solutions of systems like Ax ≤ b (which are really
Ax + Is = b for some slack variables s). When we take an m ×m submatrix of such a system, if
some of the slack variables are basic, then the determinant might be equal to the determinant of a
smaller, k × k submatrix of A.

This is the explanation for integer solutions to network flow problems! It turns out that:

Theorem 4. In any network, the matrix of flow conservation constraints is totally unimodular.

Proof. The key to this is that each variable xij in a flow appears in at most two conservation
constraints: once in flow conservation at i, and once in flow conservation at j. (When i or j is s or
t, there might be just one constraint.) Moreover, these have opposite coefficients: 1 and −1.

If we take a k×k submatrix of the flow conservation matrix, one of the following happens happens:

1. We picked the column for a variable xij , but didn’t pick any of the rows where xij has a
positive coefficient. Then our submatrix has a column of all zeroes, and the determinant is 0.

2. We picked the column for a variable xij , but only picked one of the rows where xij has a
nonzero coefficient. Then we can do an expansion by minors along xij ’s column, and get a
determinant equal to ±1 times a (k− 1)× (k− 1) determinant; repeat this argument for that
determinant instead.

(If k is already 1, we get a determinant of ±1 equal to our single nonzero entry.)

3. If case 1 and 2 don’t occur for any column, then every column has both a 1 and a −1 inside it.
Then the rows of our submatrix add up to 0, because the 1 and −1 in every column cancel.
This is a linear dependency between the rows, so the determinant is 0.

Since all cases result in a determinant of −1, 0, or 1, the matrix is totally unimodular.

To help with visualization, here is an example network and the matrix for its flow conservation
constraints:

s t

a b

c d

0/10

0/10

0/12

0/10

0/4

0/8

0/4

0/4


1 0 −1 −1 0 0 0 0
0 0 1 0 −1 1 0 0
0 1 0 0 0 −1 −1 0
0 0 0 1 0 0 1 −1


The rows correspond to nodes a, b, c, d; the columns, to variables xsa, xsc, xab, xad, xbt, xcb, xcd, xdt.

3



Theorem 4 implies the integral flow theorem (we have to consider the capacity constraints as well,
but it turns out these do not change much). It also explains why the dual program always has an
integer optimal solution (representing a cut).

3 Some applications

3.1 Graph factorization

Problem 1. A chocolate factory has 11 employees; conveniently; there are 11 industrial processes
that they need to be trained in. Not everyone needs to be trained in every process; is it possible for
every employee to learn 5 processes, such that every process has 5 employees that are trained in it?

Suppose that the first part of the problem is solved. Later, the factory would like 3 of the employees
trained in a process to get a official certification in it. Is it possible for this to happen so that every
employee gets certifications in 3 of the 5 processes they are trained in?

For the first part of this problem, there are some mathematical constructions with modular arith-
metic that show how it can be done; however, we can also set this up as a network flow problem.
Draw the following network (where unlabeled arcs (ai, bj) should have capacity 1):

s

a1 a2 · · · a10 a11

b1 b2

· · ·

b10 b11

t

0/5 0/5 0/5 0/5

0/5 0/5 0/5 0/5

Suppose we can find an integer flow in this network with value 5 · 11 = 55. Then every node ai
receives 5 flow from s, which it must send to 5 different nodes among b1, b2, . . . , b11. Meanwhile,
each of those nodes must receive a total of 5 flow, which it sends on to t. Now, if we interpret a
flow of 1 from ai to bj as “Employee i is trained in process j” then we satisfy the conditions in the
problem exactly.

How do we know that an integer flow like this exists? The key is that a fractional flow like this can
be found without any work. As before, send 5 flow from s to every node ai, and have each node
ai send

5
11 units of flow to each node b1, b2, . . . , b11. As a result, every node bj receives 5

11 units of
flow from 11 different sources, for a total of 5, which it passes on to t. This is a maximum flow,
since we cannot send any more flow out of s, so by the integral flow theorem, there is an integer
maximum flow with the same value.

For the second part of the problem, assuming we have solve the first any way we like, redraw the
network: keep only the arcs (ai, bj) which were used in the integer solution to the first part of the
problem. Then, change the capacity on the arcs out of s and into t to 3.

4



Again, we can find a fractional flow with value 3 ·11 (the maximum possible) quickly. Node s sends
3 flow to each of a1, a2, . . . , a11. Each of them sends 3

5 flow along each of the 5 arcs leaving it; then
each of the nodes b1, b2, . . . , b11 receives 3

5 flow along 5 incoming arcs, for a total of 3, and sends
on 3 flow to t. By the integral flow theorem, there is also an integer flow with value 3 · 11; picking
out only the arcs (ai, bj) with flow 1, and interpreting them as “Employee i gets a certification in
process j”, we satisfy the requirements of the problem.

3.2 Consistent matrix rounding

Problem 2. The students, faculty, and staff at a university vote on whether they prefer coffee or
tea, and we get the following percentages among those who voted:

Students (p) Faculty (q) Staff (r) Total

Coffee (a) 7.143% 21.43% 14.29% 42.86%
Tea (b) 28.57% 7.143% 21.43% 57.14%

Total 35.71% 28.57% 35.71% 100%

Can we round all percentages to integer values so that the row and column totals still make sense?

There are more than just aesthetic reasons why we might want to round data like this. In a scientific
report, we want to avoid revealing specific numbers, but as it is, a determined investigator might
notice that all of these percentages are approximate multiples of 1

14 . This strongly suggests that
there were 14 people total, that exactly one student preferred coffee, and so forth.

It turns out that we achieve the rounding we want if we allow ourselves a tiny bit of flexibility: we
can round each percentage in either direction, not just to the closest integer. Moreover, this can
be described as a variant of the network flow problem!

The network that represents the problem is given below. Arcs (s′, a) and (s′, b) correspond to
the row sums; arcs (p, t), (q, t), and (r, t) correspond to the row sums; the six intermediate arcs
correspond to individual entries of the table. With this setup, flow conservation constraints are
exactly the constraints that tell us that row and column sums do what they’re supposed to do.

s s′

a

b

p

q

r

t[100,100]

[42,43]

[57,58]

[7,8]

[21,22]

[14,15]

[28,29]

[7,8]

[21,22]

[35,36]

[28,29]

[35,36]

We have not talked about how to solve a network flow problem with lower and upper bounds. It
turns out that there are ways to convert this problem to a problem with only capacities, and if we
had more time in the semester, we’d absolutely talk about how. For now, let’s just prove that this
network must have an integer flow satisfying all the constraints (and with value exactly 100).

First, there is a feasible flow x using the exact values that generated our percentages: for example,
xsa in this feasible flow is exactly 6

14 ·100%, the value that created our approximate value of 42.86%.
This flow is optimal, so an optimal integer flow exists as well.

5


	Consequences of the Ford–Fulkerson method
	Totally unimodular matrices
	Some applications
	Graph factorization
	Consistent matrix rounding


