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1 Cutting planes in general

The cutting plane method is really a family of strategies for solving integer programs.

The philosophy is that an integer program can have multiple linear programming formulations:
different sets of linear inequalities describing the same set of integer points. When we solve the linear
programming relaxation and get a fractional solution, that’s a sign that our linear programming
formulation wasn’t very good.

So why not try to improve it?

Specifically, suppose that we have an integer program

maximize
x∈Zn

cTx

subject to Ax ≤ b

x ≥ 0

We solve the LP relaxation, and get a fractional solution x∗. If we want an improved formulation
of this integer program, we want to generate a new inequality pTx ≤ q such that:

• It’s valid for the integer program: every point x ∈ Zn that satisfies Ax ≤ b and x ≥ 0 also
satisfies pTx ≤ q.

We don’t want to change the problem, after all!

• It cuts off the fractional solution x∗ we got previously: we have pTx∗ > q.

If this does not hold, then adding the new inequality won’t help; we’ll still get x∗ as the
optimal solution to the LP relaxation.

Such an inequality is called a cutting plane for the integer program. If we can come up with a
cutting plane, then we can add it as an additional constraint, and solve the LP relaxation of the
new integer program.

Of course, there’s no guarantee that the new LP relaxation will have an integer solution, either.
We might get another fractional solution, in which case we’ll have to do this again. The hope is
that after several steps, we’ll get an integer solution.

One big question remains: where do we actually get these cutting planes to begin with?

There are many strategies, and each one results in a cutting plane method. They vary in how
difficult they are (some require more or less work to come up with a cut) and how effective.

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/
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2 The Gomory fractional cut

The Gomory fractional cut is one strategy for coming up with cutting planes. It’s quick to perform,
and the cuts it produces are pretty good.

To make it work, we’ll assume that we have a purely integer program: some cutting plane methods
still work with a mix of integer and real variables, but this one isn’t one of them. We’ll also assume
that all numbers in the constraints are integers. (If they’re merely rational numbers, we can turn
them into integers by clearing denominators.) This is important because:

Fact 1. Given a purely integer linear program where all numbers in the constraints are integers, at
every basic solution the slack variables also have integer values.

This fact holds because, given the assumptions, every slack variable will be a difference between two
integer quantities: the two sides of an inequality in integer variables with integer coefficients.

Normally, our slack variables are real numbers, and there is no reason to force them to be integers.
However, the Gomory fractional cut cannot work unless all the variables are integer variables, and
that includes the slack variables.

2.1 The general rule

The Gomory fractional cut takes an equation in integer variables, and uses it to come up with an
inequality they must satisfy. The rule defining the fractional cut is:

Theorem 1. Suppose that nonnegative integer variables x1, x2, . . . , xn satisfy the equation

a1x1 + a2x2 + · · ·+ anxn = b.

Then they also satisfy the inequality

⌊a1⌋x1 + ⌊a2⌋x2 + · · ·+ ⌊an⌋xn ≤ ⌊b⌋

where ⌊r⌋ denotes the floor of r: the greatest integer less than or equal to r. Moreover, the difference
between the two sides of this inequality is an integer.

Proof. The quantity ⌊a1⌋x1+⌊a2⌋x2+· · ·+⌊an⌋xn has smaller or equal coefficients on every variable,
compared to a1x1 + a2x2 + · · ·+ anxn. Since all the variables are nonnegative, it must be smaller.
We conclude that

⌊a1⌋x1 + ⌊a2⌋x2 + · · ·+ ⌊an⌋xn ≤ b.

However, in the inequality we just wrote down, the left-hand side is an integer. So if it is less than
or equal to b, it is also less than or equal to ⌊b⌋, giving us the inequality.

The difference between the two sides of the inequality is an integer simply because both sides are
integers.

It is often convenient to rewrite the inequality in this theorem by subtracting it from the equation
we started with, getting

(a1 − ⌊a1⌋)x1 + (a2 − ⌊a2⌋)x2 + · · ·+ (an − ⌊an⌋)xn ≥ b− ⌊b⌋.
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Here, ai − ⌊ai⌋ and b− ⌊b⌋ are called the fractional parts of ai and of b.

Be careful when taking fractional parts of negative numbers! If r is a positive real number, r− ⌊r⌋
is just the part of r after the decimal, but this is no longer true if r is negative. For example, if
r = −1.23, then its floor is ⌊r⌋ = −2, and its fractional part is r − ⌊r⌋ = 0.77.

There is a further detail we need to know: not just that this inequality is valid, but that it cuts
off fractional optimal solutions. This will force the dual simplex method to find us a new solution,
with a new opportunity for it to be an integer solution.

If the Gomory fractional cut is obtained from a row of our dictionary, then the fractional-part form
of the inequality will contain only nonbasic variables: the single basic variable xi will have ai = 1
(since it appears on the left side with coefficient 1) and therefore ai − ⌊ai⌋ = 0. So the right-hand
side of the inequality will be 0 at the current basic solution. Provided we pick a row where the
constant term is a fraction, we will have b− ⌊b⌋ > 0, so the inequality will not hold!

2.2 An example

As an example, consider the following integer program:

maximize
x,y∈R

3x+ 2y

subject to 3x+ y ≤ 6
y ≤ 2

x, y ≥ 0

Before we can find a cutting plane, we should solve the linear programming relaxation.

max ζ = 0 + 3x+ 2y

w1 = 6− 3x− y

w2 = 2 − y

⇝

max ζ = 4− 2w2 + 3x

w1 = 4 + w2 − 3x

y = 2− w2

⇝

max ζ = 8− w1 − w2

x = 4
3 − 1

3w1 +
1
3w2

y = 2 − w2

If we did not find an integer solution, then by definition, one of the basic variables will have a
fractional value in the optimal dictionary. In our case, x has a fractional value. Finding the
Gomory fractional cut requires us to pick one such variable; if there are several, it doesn’t matter
which one we pick, but in this case, we can only pick x.

To apply Theorem 1 here, we need to write x’s equation in the appropriate form. We move all the
nonbasic variables to the left-hand side, getting

x+
1

3
w1 −

1

3
w2 =

4

3
.

The inequality in Theorem 1 is obtained by rounding every coefficient down to the nearest integer.
This turns x into x, 1

3w1 into 0w1 or 0, −1
3w2 into −w2, and

4
3 into 1, so we get the inequality

x− w2 ≤ 1.
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The reason we like to subtract this inequality from the previous inequality (or equivalently, take
the fractional parts of the coefficients) is that this eliminates the basic variable x, giving us an
inequality in the nonbasic variables:

1

3
w1 +

2

3
w2 ≥

1

3
.

Our next step is to add this to our dictionary. We add a new variable w3 representing the amount
by which 1

3w1 +
2
3w2 exceeds 1

3 . Solving for w3, this gives us the equation

w3 = −1

3
+

1

3
w1 +

2

3
w2.

The clause at the end of Theorem 1 is important here: it tells us that the new variable w3 will be
an integer at any integer solution to our program, so we will continue to have an integer program
in which all variables are integers.

We can add the equation w3 = −1
3 + 1

3w1 +
2
3w2 as another row to our dictionary and solve the

new linear program using the dual simplex method:

max ζ = 8− w1 − w2

x = 4
3 − 1

3w1 +
1
3w2

y = 2 − w2

w3 = −1
3 + 1

3w1 +
2
3w2

⇝

max ζ = 15
2 − 1

2w1 − 3
2w3

x = 3
2 − 1

2w1 +
1
2w3

y = 3
2 + 1

2w1 − 3
2w3

w2 =
1
2 − 1

2w1 +
3
2w3

(A brief synopsis of the dual simplex pivot we did: we know that w3 is our leaving variable,
and because both w1 and w2 have positive coefficients, they’re both on our shortlist for entering
variables. We compare ratios, and w1’s ratio

1
1/3 is larger than w2’s ratio

1
2/3 , so w2 is our entering

variable. After pivoting, we end up with an optimal dictionary.)

We are still not done, because (x, y) = (32 ,
3
2) is not a integer solution. But let’s take a break from

that to look at what is going on graphically.

To visualize the procedure of adding a cutting plane, we can rewrite our inequality x− w2 ≤ 1 in
yet a third form: in terms of x and y. To do this, substitute w2 = 2− y, getting x− (2− y) ≤ 1 or
x+ y ≤ 3. In the diagram of the feasible region, here is what this looks like:

⇝

The newly added inequality separates all the integer solutions (in black) from the fractional solution
to the LP relaxation (the large point in red). Unfortunately, the optimal solution to the new feasible
region happens to be the one corner of that region that doesn’t have integer coordinates. We have
the worst luck!
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To continue, we go back to our dictionary. All three basic variables have a fractional value, so we
could pick any of them to deal with, but let’s pick x again. (In this example, it turns out that we’ll
get the same cut no matter which equation we get it from.)

Moving all the variables to the left, we get x+ 1
2w1− 1

2w3 =
3
2 . Taking the fractional parts according

to the alternate form of Theorem 1, we get the inequality 1
2w1 +

1
2w3 ≥ 1

2 . We can add this to our
dictionary, with a new slack variable w4, if we define w4 = −1

2 + 1
2w1 +

1
2w3.

Applying the dual simplex method again takes us only one pivot step:

max ζ = 15
2 − 1

2w1 − 3
2w3

x = 3
2 − 1

2w1 +
1
2w3

y = 3
2 + 1

2w1 − 3
2w3

w2 =
1
2 − 1

2w1 +
3
2w3

w4 = −1
2 + 1

2w1 +
1
2w3

⇝

max ζ = 7− w3 − w4

x = 1 + w3 − w4

y = 2− 2w3 + w4

w2 = 0 + 2w3 − w4

w1 = 1− w3 + 2w4

The optimal solution is (x, y) = (1, 2), which is an integer solution! After the second cutting plane,
we are done.

The second cut we added, which we wrote as 1
2w1 +

1
2w3‘ ≥ 1

2 , can be written in terms of x and y
as 2x+ y ≤ 4. Here is another diagram showing the evolution of our feasible region as we add the
cutting planes:

⇝ ⇝

3 Extensions

The cutting plane method is often combined with the branch-and-bound method into a hybrid
algorithm called “branch-and-cut”. Here, when solving a linear program and getting a fractional
solution, we make a choice between two options:

• Pick a variable xi with a fractional value, and use it to branch out to two new linear programs,
as usual in the branch-and-bound method.

• Add a cutting plane inequality to replace the linear program by a new one with a different
solution.

It’s a matter of heuristics (in other words, guesswork) to decide between these two options. These
heuristics are only partially developed by mathematical reasoning; partially, we just check them on
practical examples to see how well they behave.

5


	Cutting planes in general
	The Gomory fractional cut
	The general rule
	An example

	Extensions

