
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 28: The traveling salesman problem

December 1, 2022 Kennesaw State University

1 The traveling salesman problem

The “flavor text” of the traveling salesman problem (TSP) is the following. There are n cities,
numbered 1, 2, . . . , n, with some costs of travel between them. Between two cities i and j, we are
given a cost of travel cij to go from i to j. (We assume that it’s possible to travel from any city
to any other—maybe you can hire a private jet if you need to—but some costs may be extremely
large.)

A salesman starting in city 1 wants to visit all n cities in some order and return to city 1. We call
this a tour of the n cities—sometimes we call it a closed tour to distinguish it from open tours
which do not have to return to the starting point. The salesman’s goal is to find the cheapest
possible (closed) tour, adding up the cost of all n legs of the tour. There are (n − 1)! orders in
which the other cities could be visited, so this is not a problem we can solve by brute force for any
reasonable value of n.

These days, we buy everything online, so we are not interested in solving the problems of actual
traveling salesmen. On the other hand, an Amazon delivery truck might end up solving the traveling
salesman problem if it has to make n deliveries in a neighborhood in the shortest amount of time.
Many other route-planning algorithms also require solving the traveling salesman problem, even
when literal salesmen are not involved.

There are also many industrial applications in which “cities” and “travel” are more metaphorical.
For example, if we are constructing an object layer by layer in a 3D printer, then optimizing the
order in which we deposit material is a variant of the traveling salesman problem. We might also be
drilling holes in a circuit board, cutting a sheet of wood with a laser cutter, or even manipulating
a robot arm to take photos of an object from multiple angles2.

Even if some of these problems add additional twists to the problem, the starting point is usually
one of the two TSP formulations we will look at today.

It will be convenient for us to assume that we never visit a city more than once in a tour. In some
formulations, this may require distinguishing between “official” and “unofficial” visits to a city. For
example, we can imagine that if we’re trying to tour the US by taking airplane flights, we might
go from Atlanta to Orlando to Charlotte, and the flight from Orlando to Charlotte might have a
layover in Atlanta. In this case, the cost of the Orlando–Charlotte route in our problem would
simply be the total cost of the two-leg trip, and we don’t even notice the layover in Atlanta when
we’re finding the optimal tour.

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022
2For more details of this unusual application—with pictures!—see the paper where I originally found it: https:

//doi.org/10.3390/robotics11010016.

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022
https://doi.org/10.3390/robotics11010016
https://doi.org/10.3390/robotics11010016

On the other hand, we could also consider a problem where “unofficial” visits to a city are not
allowed—for example, we are still trying to visit n different cities in the US by airplane and return,
but we want our trip to consist of n direct flights. In this case, the cost of going from Orlando to
Charlotte might increase if we have to avoid stopping in Atlanta. We will return to this distinction
at the end of the lecture.

2 An incomplete formulation

Here is a first attempt at representing the problem with an integer program.

Suppose that to every pair of cities (i, j), we assign an integer variable xij ∈ {0, 1} which will equal
1 if the tour goes from city i to city j, and 0 otherwise. Then the pair (i, j) constributes cijxij to
the total cost of a tour: cij , when xij = 1, and 0, when xij = 0. Therefore, we have an objective
function to

minimize
n∑

i=1

n∑
j=1

cijxij .

In a tour, we visit each city only once: we enter the city once, and then we leave the city once.
(For city 1, we do those in a different order: first we leave city 1, and then we return to it. But
this doesn’t affect things; in fact, in a tour, it doesn’t matter which city is the starting city.) We
can represent this requirement by a pair of constraints for each city:∑

1≤i≤n
i ̸=j

xij = 1 for each j = 1, 2, . . . , n (1)

∑
1≤k≤n
k ̸=j

xjk = 1 for each j = 1, 2, . . . , n (2)

Equation (1) says that we arrive at city j from exactly one other city. Equation (2) says that we
leave city j to go to exactly one other city.

If these constraints were all we needed, we’d be in great shape. (In fact, the constraint matrix so far
is totally unimodular, so we wouldn’t even need to worry about integer programming techniques.
We will not prove this, because it doesn’t immediately help us with anything, but it’s true.)
Unfortunately, there’s a problem.

Take a random set of 9 points (as in the first diagram) and let cij be the distance between the ith

point and the jth point. Then the minimum-cost tour between the 9 points, as found by a brute-

2

force search, is shown in the second diagram. Unfortunately, the solution to the integer program
with constraints (1) and (2), shown in the third diagram, is not a tour at all!

The optimal solution to the integer program we have so far satisfies the constraint that we must
enter each node once and leave it once, and so it looks like a tour “locally”. Unfortunately, it is
missing the “global” condition that the tour must be connected.

3 Subtour elimination constraints

We solve this problem by adding additional constraints called subtour elimination constraints
that rule out the disconnected solutions. There are two famous solutions to this problem that take
very different approaches, each with its advantages and drawbacks.

3.1 Solution #1: the DFJ constraints

The first solution to this problem was proposed by Dantzig, Fulkerson, and Johnson in 1954. To
disambiguate, we will call this set of constraints the DFJ constraints.

The DFJ subtour elimination constraints are the constraints∑
i∈S

∑
j /∈S

xij ≥ 1 for each S s.t. 1 ≤ |S| ≤ n− 1 (3)

For every set S of cities, other than the empty set ∅ and the set {1, 2, . . . , n} of all cities, the sum
on the left-hand side ranges over all pairs (i, j) such that going from city i to city j leave S. By
requiring the sum to be at least 1, we require that the tour will leave the set S at least once.

This is guaranteed to happen for any legitimate tour. Since the tour visits every single city, it must
visit a city in S at some point. However, the tour cannot stay in S forever, since there are also
cities not in S, so eventually it must take a step that leaves S.

However, the optimal solution to the constraints in (1) and (2) on the previous page violates this
condition. We could, for example, take S to be the set of the three points on the bottom. The
solution there consists of a “subtour” that just cycles between the three cities in S, and some other
thing that happens between the six cities outside S, with no step that leaves S.

With the subtour elimination constraints in play, every integer solution to (1), (2), and (3) is
actually a valid tour, and so we can solve the TSP problem using an integer program. A slightly
concerning feature of the subtour elimination constraints is that there are 2n − 2 of them. That
number grows almost as quickly as the number (n− 1)! of possible tours, so solving even the linear
programming relaxation might not be quicker than solving the TSP problem by brute force.

A solution to this is to add the constraints in (3) on the fly, one at a time, just as we added the
fractional cuts in the previous lecture. Given any integer solution to (1) and (2) that is not a tour,
we can quickly find a set S for which the corresponding constraint in (3) is violated. For example,
we can start at city 1 and follow the path defined by the integer solution (by going from city i to
the unique city j such that xij = 1) until we return to city 1. Let S be the set of all cities we visit:
then either S = {1, 2, . . . , n} and we have a tour, or else the subtour elimination constraint for S

3

is violated because ∑
i∈S

∑
j /∈S

xij = 0.

As a result, one way to proceed is using a hybrid branch-and-cut method, starting with just (1)
and (2) as the constraints. Whenever we find a fractional solution (which can’t happen with just
those constraints, but might happen if we have added some of the constraints in (3) already), we
can branch on one of the fractional variables. Whenever we find an integer solution which doesn’t
represent a tour, we can find a set S for which the constraint in (3) is violated, and add that
constraint to the problem.

3.2 Solution #2: MTZ constraints

Another way to formulate the integer program, discovered by Miller, Tucker, and Zemlin in 1960,
avoids the subtour elimination constraints in favor of a more compact formulation. In the MTZ
constraints, we add n − 1 additional variables t2, t3, . . . , tn that, intuitively, represent the time at
which a city is visited.

If the times at which we visit the cities are given, then we can eliminate subtours with the condition
that, when going from city i to city j, the time tj at which city j is visited must be later than the
time ti at which city i is visited. Because strict inequalities are not something we allow in linear
programs, we will phrase this as the logical implication

if xij = 1, then tj ≥ ti + 1

for every pair (i, j) with i ̸= 1 and j ̸= 1. (We leave t1 undefined and don’t include it in these
constraints because city 1 is visited twice: at the start of the tour, and at the end.)

We can encode the logical implication with the “big-M” technique:

tj ≥ ti + 1−M(1− xij)

where M is some large number: when xij = 0, the constraint tj ≥ ti + 1 −M does nothing, and
when xij = 1, we have tj ≥ ti+1. We can actually choose M = n, because the times can be chosen
from the range [0, n− 1]. This gives us the constraints

ti − tj + 1 ≤ n(1− xij) for all i, j ̸= 1 s.t. i ̸= j (4)

In any actual tour, we can satisfy (4) by setting ti = 1 for the first city we visit after city 1, ti = 2
for the second, and so on, with ti = n− 1 for the last city (after which we return to city 1).

However, if we have an integer solution to (1) and (2) that is not a tour, it must have a subtour
not including city 1. For that subtour, some constraint in (4) must be violated. For example, if
the subtour goes from city a to b to c back to a, then we must have xab = xbc = xca = 1, and
constraint (4) for these three pairs simplifies to

ta − tb + 1 ≤ 0

tb − tc + 1 ≤ 0

tc − ta + 1 ≤ 0

4

There is no solution to these three constraints: when we add all three of them together, the variables
ta, tb, tc all cancel and we get the false inequality 3 ≤ 0. We get a similar contradiction for a longer
subtour.

With the equations (1), (2), (4), we only have around n2 constraints in our (n2+n)-variable integer
program, which is much better than the around 2n constraints we had earlier. The variables
t2, t3, . . . , tn don’t even need to be integer variables, although there is an optimal solution where
they all have integer values.

It is not necessarily true that the MTZ constraints are better than the DFJ constraints, just because
there are fewer of them. In practice, it seems that the DFJ constraints have better performance—
and adding the constraints on the fly with a branch-and-cut approach solves the main obstacle to
using them. Still, the MTZ constraints have the advantage that they’re easier to work with without
specialized code: both approaches are useful in the right circumstances.

4 Approximation algorithms

So far in this class, we’ve talked about ways to solve an integer program exactly. Sometimes, we
are not that greedy: we will be happy if we find an integer solution that’s pretty good. Even this
is not always easy: there is no general-purpose strategy.

In some (but not all) cases, we can obtain a decent solution by rounding. This happens, for
example, with the configuration LP that we used to solve packing problems in Lecture 26. In
that problem, solving the LP relaxation might give us a solution with 5

2 of one configuration, 5
2 of

another configuration, and 5
3 of a third configuration. Rounding these values up could give us an

integer solution with 3 of the first configuration, 3 of the second, and 2 of the third. This is not
the best integer solution, but it is decent: we are guaranteed to exceed the optimal solution by at
most the number of configurations!

The traveling salesman problem is not a case where we can get anywhere by rounding. A fractional
solution might end up “leaving” city 1 by setting x12 = x13 = 1

2 . If we round these values up to
integers, we obtain a solution that is supposed to go from city 1 to both city 2 and to city 3 at the
same time: this is nonsense!

We will see a decent approximation algorithm in the case of the metric traveling salesman problem:
where costs are symmetric (cij = cji) and satisfy the triangle inequality cij + cjk ≥ cik. This is true
of distances in the plane, for example.

The trick here is that a related problem turns out to be much easier to solve. Suppose that we want
to find the cheapest set of connections that join all the cities together, even if we cannot visit them
in order. This is always guaranteed to be at least as cheap as the cheapest closed tour. Moreover,
this is a problem that can be solved greedily: if we repeatedly take the cheapest connection that
does not create a subtour until we reach n − 1 connections (for n cities), then the result will be
optimal for this simplified problem.

Given such a set of connections, we can find a closed tour, with some redundancies in it, that uses
each connection twice: once in each direction. This is where we lose optimality: we are now at

5

twice the cost of the simplified problem, which could be as bad as twice the cost of the optimal
traveling salesman tour (but no worse).

Finally, assuming that the triangle inequality cij + cjk ≥ cik holds, we can simplify our solution to
a standard closed tour that does not revisit any cities. The way to do this is simple: every time
you’d be coming back to a city where you’ve already been, just skip ahead to the next new city!
This can only reduce the cost of the tour.

An example of this is shown below: first the cheapest set of connections that join together all the
cities, then the tour that uses each of those connections twice, then the simplified closed tour that
does not revisit cities. (In the second diagram, the curved arcs are just there to help distinguish
the two times we use a connection; the distances we use for costs are still measured along a straight
line. In the last diagram, the two times we “skip ahead” are drawn in red.)

In this case, though we did not find the optimal solution, we got much closer than the factor-2
guarantee. The optimal solution (shown on a previous page) has total length about 4.88733; the
solution found by our approximation algorithm has total length about 5.01606.

A fancier version of this approximation algorithm, called the Christofides algorithm, does even
better: its cost is at most 1.5 times the cost of an optimal tour. This is not always what we want,
but it can be better than nothing if our integer programs are too big to solve directly!

6

	The traveling salesman problem
	An incomplete formulation
	Subtour elimination constraints
	Solution #1: the DFJ constraints
	Solution #2: MTZ constraints

	Approximation algorithms

