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1 An example with nothing weird going on

Today, we will skip the word problem and go straight to the linear program.

Problem 1. Solve the following linear program (put in equational form on the right).

magé@{éze 2z + 3y $7g}g§i@ij“f€R 2z 4+ 3y
subject to —x+ y <3 subject to —x+ y+w; =3
r—2y <2 ~ T —2y + wo =2
T+ y<7 T+ y +w3 =17
z,y >0 z,y, wi, w2, w3 >0

Adding slack variables has a convenient bonus effect. The slack variables (wj,ws,ws) form a

convenient set of basic variables to start with, for two reasons:

e The dictionary will already be row-reduced for the slack variables, since each one shows up

in only one equation. This will be true any time we add slack variables.

e The basic solution is (x,y, wi, ws,ws) = (0,0,3,2,7), which is feasible. This happens when-
ever our starting inequalities are all upper bounds with a positive constant on the right-hand

side. So it’s not always useful, but sometimes makes our lives easier.

Here is our starting dictionary, and a graph of the feasible region (of the original linear program in

x and y) with the corresponding basic feasible solution marked:

Yy
max( =0+ 2z + 3y
wr =3+ r— y
we =2— x4+ 2y
wy=7— x— ¥y "
(0,0)

In a well-behaved 2-dimensional linear program, exactly 2 constraints should be tight at each corner.

Specifically, it’s the ones corresponding to the nonbasic variables.

In this dictionary, the nonbasic variables are = and y, and the constraints they “own” are the x > 0
and y > 0 constraints. So we should be at the corner where these two constraints are tight: the

intersection of x = 0 and y = 0.

!This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/
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Let’s bring y into the basis. (This is an arbitrary choice: we could also have chosen z.) Since wy’s
coefficient of y is 2, it’s not a valid leaving variable; w; and w3 have ratios of % and %, of which the
smallest is 3. So y replaces wy in the basis, giving us the new dictionary below:

Y

max( = 9+ bx — 3w, 0,3)
y=3+ x— w
wy =8+ x— 2w
wy =4—2x+ w;

The basic feasible solution is (z,y,wi, w2, w3) = (0,3,0,8,4). The nonbasic variables of the new
dictionary are x and wi. As before, x “owns” the z > 0 constraint. Meanwhile, w; “owns” the
wy > 0 constraint, but in the original linear program, this was the —x+y < 3 constraint. We should
be at the corner where z = 0 and —x + y = 3 meet, and indeed, these lines meet at (0, 3).

The choice of entering variable corresponds to picking the direction in which we went around the
polygon: which edge out of (0,0) we used. The edge from (0,0) to (0,3) moves away from the
y > 0 constraint, so y is the variable that becomes basic. We could also have brought x into the
basis, moving away from the x > 0 constraint.

But now, at (0, 3), there is only one good choice of entering variable. We don’t want to go back to
(0,0), so the only choice is to continue going clockwise. In the dictionary, this corresponds to how
we don’t want to bring w; back into the basis (its reduced cost is negative, so this would decrease
(). Instead, the only helpful entering variable is x, whose reduced cost is positive.

In 2’s column, the coefficients of y and ws are both positive, so those can’t be leaving variables.
Therefore = replaces ws in the basis, giving us the new dictionary below:

y (2,5

max ¢ =19 — 2wy — Sws

1 1
y= 5—zwi— 3w3
w2:10—%w1—%’w3

1 1
r= 2+ zw; — w3

In this dictionary, all reduced costs are negative. Therefore ( is maximized and (z,y) = (2,5) is
the optimal solution.

(Here, w; and ws are nonbasic. The constraints they “own” are the —z +y < 3 constraint and the
x4y < 7 constraint. So we end up at the corner point where the lines —z +y =3 and z+y =7
intersect.)

If we had decided pivot around x first, rather than y, we would have arrived at the same final
answer, but going counterclockwise around the feasible region instead. There would have been
three steps, not two, because there are three edges to take when going around that way.



2 An unbounded linear program

Let’s modify Problem 1, removing the constraint  + y < 7 (corresponding to the slack variable
ws:

Problem 2. Solve the following linear program (put in equational form on the right).

maximize  2x + 3y maximize 2z + 3y
z,yeR z,y,w1,w2€R
subject to —x+ y <3 — subject to  —x+ y+wy =3
z,y >0 z,y, wi, w2 >0

Our first iteration of the simplex method will be nearly the same with Problem 2 as it was with
Problem 1, and will also bring us to the point (0,3). We can quickly get the dictionary for that
point by dropping the equation for ws:

max ( = 9+ 5z — 3wy (0,3)
y=3+ z— w

w2:8+ a:—2w1

Looking at the diagram, we see what’s about to happen: the feasible region is unbounded in the
direction we want to go.

It’s still a good idea to bring = into the basis: it still has a positive reduced cost. But now, both
basic variables are ruled out at the first stage: both of them have a positive coefficient in x’s column,
so neither of them decreases as x increases. There is no leaving variable to choose.

This is what it looks like when the linear program is unbounded, and we can improve the objective
value as much as we want. There is no optimal solution.

From this dictionary, we can also learn a bit about how the linear program is unbounded. The
variables doing useful work are the basic variables y,ws and the entering variable x. All other
variables (just wj in this case) should be set to 0. Setting w; to 0 and getting rid of it in every
other row gives us the following pseudo-dictionary:

Yy
y=3+ x
wy =8+ x
w1:0




We get better and better solutions as we travel along the line y = 3 + x, increasing = as much as
we want: the objective value increases as ( = 9 4+ 5z. All our variables remain positive (including
the slack variables w; and ws), so the solution remains feasible the whole way.

All this is happening behind the scenes when we do any pivot step. But here, because the coefficients
in x’s column were both positive, the slopes of y = x + 3 and ws = x + 8 are both positive, which
means that we can increase z without a limit. And since z had a positive reduced cost of 5, we
know that this gives us arbitrarily large objective values.

Whenever we learn from the dictionary that the linear program is unbounded, we can perform such
an analysis to find an infinite ray of feasible solutions along which the objective value improves
without bound.

3 An example of degenerate pivoting

For our final problem, let’s replace the x + y < 7 constraint by the constraint z 4+ 2y < 6:

Problem 3. Solve the following linear program (put in equational form on the right).

manggﬂgze 2z + 3y x,Tgﬁu@iqffeR 2z + 3y
subject to —xz+ y<3 subject to  —x+ y+w; =3
x—2y <2 ~ T — 2y + wo =2
r+2y <6 T+ 2y + w3 =6
z,y >0 z,y,wy, w,ws >0

To see what makes Problem 3 different from Problem 1, let’s take a look at the initial dictionary
and especially at the feasible region:

Y
max( = 0+ 2z + 3y
wy =3+ z— y
wy =2— x+2y
wy=6— x—2y "
(0,0)

The constraint —z +y < 3 is just barely irrelevant. The line —z + y = 3 touches the feasible region
at the corner point (3,0), and doesn’t change the feasibility of anything. How will things change?
Let’s find out!

We can proceed as before and bring y into the basis. As before, ws is out of consideration because

it has a positive coefficient in g’s column. Meanwhile, w; and ws have ratios % and g, so they are

tied for having the smallest ratio. As we increase y, wy and ws will decrease and hit 0 at the same
time.



Which leaving variable do we choose in such a case? Right now, we have no way to tell which
choice is better, but either choice will give us a feasible dictionary. Let’s choose wy, because that’s
what we did last time. We get:

max( =9+ 5z — 3w, 0,3)
y=3+ x— w
wo =8+ = — 2w
wg = 0 — 3x + 2wy

Here is where things start to go wrong. Our next entering variable must be xz, because it’s the
only variable with positive reduced cost. As z increases, y and wsy also increase, so they will not
leave the basis: the leaving variable must be ws. But when we make this happen, the dictionary
changes, but the values of all the variables stay the same!

Y

maXC = 9 + %wl — ngl, (07 3)

1 1

y=3— 3W1 — 3W3
4 1

Wy = 8 — 3W1 — 3W3

x:0+§w1—%w3

The problem is that the three lines z = 0, —z +y = 3, and = + 2y = 6 all meet at the point (0, 3).
Previously, when x and w; were nonbasic, we thought of (0,3) as the intersection of z = 0 and
—x +y = 3. Now, w; and w3 are nonbasic, and we’ve “moved” to the intersection of —x +y =3
and = + 2y = 6. This is also (0, 3).

This is called degenerate pivoting. There’s one big problem with degenerate pivoting;:

e Usually, we can say, “The simplex method is always improving the value of (, so it can never
revisit the same corner point. Since there’s only finitely many corner points, it has to reach
the right one eventually.”

e With degenerate pivoting, the value of ( does not always improve. So we have no guarantee
that the simplex method won’t keep going forever, stuck at the same corner point being
represented in different ways.

In this example, we’ll leave the point (0, 3) after one more step. But in more complicated examples,
when many constraints meet at one poit, staying at that point forever is a real danger. To avoid
this, we’ll need to develop pivoting rules that avoid infinite loops, by telling us the right variable
to remove from the basis in cases when there’s a tie.
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