
Math 3272: Linear Programming1 Mikhail Lavrov

Lecture 8: Pivoting rules

September 8, 2022 Kennesaw State University

1 A very degenerate problem

Here is the example we will consider today:

Problem 1. Xerxes, Yvonne, and Zsuzsa decide to bake biscuits. However, before they begin
baking, they start arguing about how they’ll divide the biscuits:

• Xerxes says, “I’m not greedy; I just want at least one biscuit for every two biscuits that the
two of you take.”

• Yvonne says, “Well, last time we baked, Zsuzsa didn’t do her fair share of the work! I want
at least twice as many biscuits as she will get.”

• Zsuzsa says, “Look, not all of us are master bakers. I’ll do my best, and I feel like I deserve
at least a quarter of the biscuits we make.”

What is the maximum number of biscuits that they can end up baking?

If Xerxes gets x biscuits, Yvonne gets y biscuits, and Zsuzsa gets z biscuits, then our inequalities
are: x ≥ 1

2(y + z), y ≥ 2z, and z ≥ 1
4(x + y + z). The bakers’ joint goal is to maximize the total

number x+ y + z. Rearranging the inequalities, we can write the problem as:

maximize
x,y,z∈R

x+ y + z

subject to −2x+ y + z ≤ 0

−y + 2z ≤ 0

x+ y − 3z ≤ 0

x, y, z ≥ 0.

The astute observer will notice that (as usual with baking) if we find a feasible solution (x, y, z)
then we can scale it up to (2x, 2y, 2z) or even (100x, 100y, 100z) without violating the inequalities.
So it seems like there can’t be any limit in the number of biscuits baked.

This is almost correct. The challenge here is to figure out if there’s any division of biscuits that
will make all three bakers happy. If not, then the only feasible solution is (x, y, z) = (0, 0, 0) and
no amount of scaling that up will get you biscuits.

If we add slack variables w1, w2, w3 to the inequalities, then they get us an initial basic feasible
solution; no two-phase simplex method needed here! Unfortunately, the initial dictionary we write
down looks somewhat concerning. . .

1This document comes from an archive of the Math 3272 course webpage: http://misha.fish/archive/

3272-fall-2022

1

http://misha.fish/archive/3272-fall-2022
http://misha.fish/archive/3272-fall-2022


Here it is:
max ζ = 0 + x+ y + z

w1 = 0 + 2x− y − z

w2 = 0 + y − 2z

w3 = 0− x− y + 3z

Any of the three entering variables seem like equally good candidates. Let’s just try making y the
entering variable.

If we follow our usual procedure, then only w1 and w3 make it onto our “shortlist” of leaving
variables. (Even this step doesn’t seem entirely justified! Usually, if a variable is not on our
shortlist, it’s because pivoting on it is guaranteed to produce an infeasible dictionary. However, in
this case, all three leaving variables will produce feasible dictionaries when we pivot, because we
won’t be able to leave point (0, 0, 0) after this step.) The ratios for w1 and w3 are both 0

1 , meaning
that we can’t increase y past 0 before either of them becomes negative. This is a tie, so we can’t
tell which variable to pick; let’s arbitrarily take w1.

After solving w1 = 2x − y − z to get y = 2x − w1 − z and substituting this for y in the other
equations, we get the dictionary below:

max ζ = 0 + 3x− w1

y = 0 + 2x− w1 − z

w2 = 0 + 2x− w1 − 3z

w3 = 0− 3x+ w1 + 4z

It sure doesn’t seem like we’re making any progress. However, there is still a positive reduced cost,
so we can still keep going by pivoting on x.

Altogether, there are
(
6
3

)
= 20 ways to choose three basic variables in this problem. One of them

turns out not to work: if you try to solve for x, w1, and w3, you end up having to take the
inverse of a singular matrix. That leaves 19 feasible dictionaries, all of which describe the point
(x, y, z) = (0, 0, 0) in various ways.

What’s even the point of pivoting, then?2 Actually, there are two possible outcomes that would
solve the problem for us:

• Suppose that one of these 19 dictionaries has all negative reduced costs. Then that formula
for ζ proves that whenever x1, x2, x3, w1, w2, w3 ≥ 0, we have ζ ≤ 0. In that case, we’d be
able to conclude that (0, 0, 0) is the only feasible solution.

• Suppose that one of these 19 dictionaries has an entering variable, with positive reduced cost,
such that all the coefficients in that column are positive. Then we’d have a way to escape to
infinity: by increasing that variable and keeping the other nonbasic variables at 0, we increase
all the basic variables (and ζ) and discover that the linear program is unbounded.

The problem is that because of all the degenerate pivots we’re doing, we can never tell if we’re
making progress toward either of these goals. In fact, we don’t even have a clear proof that either
of these outcomes is guaranteed to happen!

2Well, the point is (0, 0, 0), of course. Haha.

2



2 Pivoting rules

A pivoting rule is a rule for making decisions in the simplex method in cases where our usual
rules don’t fully determine what to do. There are two situations in which we currently need the
help of a pivoting rule:

1. If two or more nonbasic variables have a reduced cost with the correct sign (positive when
maximizing, and negative when minimizing), then we don’t know how to choose between
them.

2. If two or more potential leaving variables are tied with an equal ratio, then we can bring
either one of them out of the basis and get a feasible dictionary. Again, we don’t know which
one to choose.

We’d like to settle these two scenarios in a way which avoids cycling: going between the same
set of dictionaries forever. Our secondary goal is to make decisions that speed up the simplex
method.

For example, it seems like a generally useful heuristic to use the highest-cost pivoting rule to
settle situation 1: when maximizing, pick the entering variable with the largest positive cost, and
when minimizing, pick the entering variable with the most negative cost. The intuition is that this
picks the direction in which the objective value improves as rapidly as possible.

On the other hand, in situation 2, it’s not clear what to do. But if we’re describing an algorithm
completely, we need to specify how to break ties! One possibility is to go in order: write down a
fixed ordered list of all our variables (such as (x, y, z, w1, w2, w3)) and always pick the first variable
on that list if there’s a tie for the leaving variable.

Unfortunately, the combination of these two rules is not a winner. It is possible to come with
examples in which it will cycle forever between different representations of the same corner point.
(One example is given in section 3.2 of Vanderbei’s textbook.)

It turns out that one good answer is to use Bland’s rule. Here, once again, we pick a fixed ordered
list of our variables. This time, we use that list to make decisions in both situation 1 and situation
2.

Fact 1. Bland’s rule prevents cycling: it can never return to a dictionary it’s previously considered.

I am calling this a “fact” and not a “theorem” because we will not prove it.

The drawback of Bland’s rule is that it’s slow: even though it never returns to the same feasible
dictionary twice in degenerate cases, it tends to perform badly in cases with no degeneracy. That is,
it often picks longer paths from the initial corner point to the optimal one. Intuitively, the reason
this happens is that variables earlier in our list are both more likely candidates to enter the basis
and more likely candidates to leave: so they end up flipping back and forth often. (Unfortunately,
this property also plays a key role in the proof that Bland’s rule prevents cycling.)

We’d like to come up with a rule that avoids cycling just by addressing situation 2 (how to choose
leaving variables). That way, we can pair it with the highest-cost pivoting rule, which only addresses
situation 1 (how to choose entering variables). The highest-cost pivoting rule is not the smartest
rule there is, but it’s good enough in many cases.

3



3 Lexicographic pivoting

The solution we’re looking for is called lexicographic pivoting. To explain this rule, we’ll begin
with a different rule that’s bad in many ways, but will provide useful intuition.

3.1 Intuition: random perturbations

Cycling can only happen when we have a degenerate pivoting step: otherwise, we’re improving the
objective value with every pivot, and can never return to a previous (worse) dictionary. Degenerate
pivoting steps only happen when we have too many variables simultaneously equal to 0 at the same
corner point.

In a randomly-chosen problem, this would never happen; once a corner point in Rn is determined
as the intersection of n hyperplanes, another random hyperplane is very unlikely to pass exactly
through that point. (In fact, in a formal way of defining that probability, the probability is 0.)
Unfortunately, we don’t usually solve randomly-chosen problems: our example today ends up with
lots of degenerate pivots, even though we didn’t do anything that weird.

But imagine if we took our system Ax = b and randomly adjusted the constants b by a small
amount. For example, maybe we randomly adjust our initial dictionary as follows:

max ζ = 0 + x+ y + z

w1 = 0 + 2x− y − z

w2 = 0 + y − 2z

w3 = 0− x− y + 3z

⇝

max ζ = 0 + x+ y + z

w1 = 0.000878996 + 2x− y − z

w2 = 0.000534988 + y − 2z

w3 = 0.000657869− x− y + 3z

Geometrically, we’ve taken each equation and pushed it by a random tiny amount. It is very
unlikely that the result has even a single degenerate dictionary. So with this adjustment, none
of our pivot steps will be degenerate, and so we’ll never cycle. Of course, we’re solving a slightly
different problem now, but as long as our random adjustments were sufficiently small, our final
answer will be very very very close to the answer to our original problem.

(Once we’re done, we may even be able to recover the exact answer to the original problem, by
assuming that our random adjustment doesn’t change the optimal choice of basic variables.)

3.2 Actual lexicographic pivoting

The method of random perturbations works, but it’s not very elegant: the solution we get is a tiny
amount off from correct, the calculations become much messier, and it’s hard to be certain what the
threshold for “tiny adjustment” is before we end up solving a completely different problem.

The lexicographic pivoting rule is inspired by random perturbations in a “let’s not, and say we did”
kind of way. Instead of adding actual tiny random numbers to our constraints, we add variables
ϵ1, ϵ2, ϵ3, . . . , ϵm that represent those tiny adjustments in symbolic form:

max ζ = 0 + x+ y + z

w1 = 0 + 2x− y − z

w2 = 0 + y − 2z

w3 = 0− x− y + 3z

⇝

max ζ = 0 + x+ y + z

w1 = ϵ1 + 2x− y − z

w2 = ϵ2 + y − 2z

w3 = ϵ3 − x− y + 3z

4



The rule for dealing with these ϵi’s is summarized by the inequality

1 ≫ ϵ1 ≫ ϵ2 ≫ · · · ≫ ϵm > 0.

What does this mean? Let’s break it down step-by-step:

• Because 1 ≫ ϵ1, we say that in any comparison between an actual constant and ϵ1 (or
any other ϵi), the constant wins. For example, we would treat even 1.001 as bigger than
1 + 1 000 000ϵ1. The ϵi’s only help us break ties between the actual constants we’ve got.

This makes sure that every pivoting step we do is also a valid pivoting step for the original
problem. At the end, we’ll be able to take the solution we got, drop all the ϵi’s from it, and
get a solution to the problem we wanted to solve.

• Similarly, ϵ1 ≫ ϵ2 ≫ ϵ3 ≫ · · · ≫ ϵm say that in any comparison between two different
constants ϵi and ϵj , the constant with the smaller subscript wins.

This makes sure that after we add the ϵi’s, we can never obtain a tie. Two expressions with
ϵi’s in them can only be equal if each of ϵ1, ϵ2, . . . , ϵm has the same coefficient. However (more
on this later) the coefficients of ϵ1, ϵ2, . . . , ϵm track how we obtained each equation from our
starting equations: so if two equations had the same coefficient on every ϵi, they’d actually
be the same equation.

The lexicographic pivoting rule gets its name from this ordering.

3.3 Working through an example

Starting from the dictionary we had just now (which is repeated below on the left), let’s pivot with
y as our entering variable, as before. Now w1 and w3 are on the shortlist, but there’s no longer a
tie between them: the ratio ϵ3

1 is smaller than ϵ1
1 , so w3 is the only possibly leaving variable. After

solving its equation for y, we get y = ϵ3 − x+ 3z −w3, which we then substitute for x in our other
equations. The result is shown on the right:

max ζ = 0 + x+ y + z

w1 = ϵ1 + 2x− y − z

w2 = ϵ2 + y − 2z

w3 = ϵ3 − x− y + 3z

⇝

max ζ = ϵ3 + 4z − w3

w1 = (ϵ1 − ϵ3) + 3x− 4z + w3

w2 = (ϵ2 + ϵ3)− x+ z − w3

y = ϵ3 − x+ 3z − w3

We’ve made an infinitesimal amount of progress: the objective value has improved from 0 to ϵ3.
(Granted, that’s pretty much the least amount of progress possible, but so what.) Note that all
three basic variables are still positive: in particular, ϵ1 − ϵ3 > 0.

There is only one positive reduced cost: it is on z. No need to compare ratios: the only possible
leaving variable when z enters the basis is w1. The resulting dictionary is

max ζ = ϵ1 + 3x− w1

z = (14ϵ1 −
1
4ϵ3) +

3
4x− 1

4w1 +
1
4w3

w2 = (14ϵ1 + ϵ2 +
3
4ϵ3)−

1
4x− 1

4w1 − 3
4w3

y = (34ϵ1 +
1
4ϵ3) +

5
4x− 3

4w1 − 1
4w3

5



Now the only positive reduced cost is on x. Once again, there is only one possible leaving variable,
which is w2. After a third pivot step, we get:

max ζ = (4ϵ1 + 12ϵ2 + 9ϵ3)− 4w1 − 12w2 − 9w3

z = (ϵ1 + 3ϵ2 + 2ϵ3)− w1 − 3w2 − 2w3

x = (ϵ1 + 4ϵ2 + 3ϵ3)− w1 − 4w2 − 3w3

y = (2ϵ1 + 5ϵ2 + 4ϵ3)− 2w1 − 5w2 − 4w3

Since the reduced costs of w1, w2, w3 are all negative, this tells us that we’ve “maximized” ζ:
4ϵ1 + 12ϵ2 + 9ϵ3 is the highest possible value it could have. Of course, just like every other value
we saw for ζ, it rounds to 0. To get our final answer, we set ϵ1 = ϵ2 = ϵ3 = 0 and get that (0, 0, 0)
really is our optimal solution.

3.4 Shortcuts (optional)

If you look back at our work, and especially at the final dictionary, you may see a pattern: the
coefficients on ϵ1, ϵ2, ϵ3 end up matching the coefficients on w1, w2, w3, up to a sign.

This is not a coincidence. When we start out writing our first dictionary, we have equations
w1 = ϵ1 + · · · , w2 = ϵ2 + · · · , and w3 = ϵ3 + · · · . After that, the cardinal rule of working with
equations is that we always do the same thing to both sides. So it will always be true that:

• When wi and ϵi are on opposite sides of the equation, they have the same coefficient.

• When wi and ϵi are on the same side of the equation, they have opposite coefficients (same
magnitude, but different sign).

• When wi doesn’t appear in an equation, neither does ϵi.

This means that in principle, we can use the lexicographic pivoting rule without actually writing
down the ϵi’s. As long as there’s no ties between potential leaving variables, it’s business as usual.
Once there’s a tie, use these rules to figure out the coefficients of ϵ1, ϵ2, . . . and break the tie.

The variables we use for this are w1, w2, w3 in this problem because those were the basic variables in
our initial dictionary, which we adjusted by adding ϵ1, ϵ2, ϵ3. In general, whatever our initial basic
variables are, those will be the variables we can use to deduce the coefficients of the ϵi’s.

6


	A very degenerate problem
	Pivoting rules
	Lexicographic pivoting
	Intuition: random perturbations
	Actual lexicographic pivoting
	Working through an example
	Shortcuts (optional)


