
Math 3322: Graph Theory1 Mikhail Lavrov

Lecture 12: Counting trees

September 19, 2024 Kennesaw State University

1 Counting problems about trees

1.1 The labeled tree problem

How many n-vertex trees are there?

There are several ways we could ask that question. For example, we could ask: how many trees
on n vertices are there, up to isomorphism? This might be one of the most natural versions of the
question, but we’re not going to ask it, because it’s too hard.

Instead, we will ask the following question. Suppose we fix a set V = {v1, v2, . . . , vn}. How many
trees are there with vertex set V ? Equivalently: how many spanning trees does Kn have? Here,
we count trees separately if they have a different set of edges, even if they are isomorphic. We
call this the problem of counting labeled trees on n vertices, because the “labels” v1, v2, . . . , vn
matter.

1.2 Counting encodings

A more fundamental question is this: in general, how do you prove the answer to a counting problem
like this one?

We can think about ways to concisely write down all the data telling us which tree we have. If we
have an encoding from which we can unambiguously recover the tree we started with, then counting
trees is just as easy as counting encodings.

Here is one way we could encode a tree with vertex set {v1, v2, . . . , vn}. We could list all the possible
edges v1v2, v1v3, v1v4, . . . , vn−1vn in some order we’ve settled on in advance. Then, for each edge,
write 1 if the edge is present in the tree, and 0 if it’s absent. For example, suppose that when
n = 4, we settle on the order v1v2, v1v3, v1v4, v2v3, v2v4, v3v4. Then the path P4 (a tree with edges
{v1v2, v2v3, v3v4} will be encoded by 100101.

There are
(
n
2

)
binary digits in this encoding; each has 2 options, so there are 2(

n
2) possible strings.

Unfortunately, this doesn’t immediately tell us that there are 2(
n
2) trees, because not every string

gives us a tree. For example, the string 111111 would give us the complete graph K4 instead.

Actually, this just tells us that there are 2(
n
2) subgraphs of Kn.

Here is another possible encoding. Go through the edges of the tree in some order; for every edge
vivj , write down the numbers i and j. This gives us a sequence of numbers; for example, P4 would be
written down as 1, 2, 2, 3, 3, 4. (We could group the edges together, writing down (1, 2), (2, 3), (3, 4),
but this shouldn’t matter for counting.)

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/

3322-fall-2024

1

http://misha.fish/archive/3322-fall-2024
http://misha.fish/archive/3322-fall-2024


Each number is between 1 and n, and there are 2n− 2 numbers: 2 numbers for each of the n− 1
edges. As a result, there are n2n−2 possible encodings. Unfortunately, this does not mean that
there are n2n−2 possible trees! There are two problems:

• Each edge can be written down in 2 possible orders, and the edges themselves can be reordered
in (n− 1)! ways. So there are (n− 1)! 2n−1 different encodings of every tree; we should divide
by this number.

• But even that doesn’t help. Unfortunately, some encodings are not valid. For example,
another way to choose 6 numbers between 1 and 4 is to choose (1, 2), (2, 3), (1, 3). The graph
this represents has vertices {v1, v2, v3, v4} and edges {v1v2, v2v3, v1v3}; it is not a tree.

So n2n−2 is also an overestimate of the number of trees, though it is closer to the truth.

2 Prüfer codes

Our last approach did not work, but it is promising. We are going to try to solve the problems
with it by eliminating the redundancy in the encoding. That is, we will:

1. Establish conventions about which order we write things down in, so that each tree gets only
one possible encoding.

2. Get rid of information that we could deduce from other things we’ve already written down.

In the end, if it’s also true that every encoding corresponds to a tree, then we’ll know that the
number of encodings is equal to the number of trees.

2.1 Writing down all the edges

For step 1, we will use a fact we established in the previous lecture: every tree with n ≥ 2 vertices
has at least one leaf, and if we delete that leaf, we get an (n−1)-vertex tree. So here is the method
we will use to write down all the edges in a different order:

1. Let vi be a leaf of the tree T . Actually, there will always be at least two leaves, so to avoid
making arbitrary choices, let vi be the leaf with the smallest value of i.

2. Let vj be the only neighbor of vi in T . Write down the pair (i, j) to represent the edge vivj .

3. Delete vertex vi and edge vivj form T to get an (n− 1)-vertex tree T ′. If n− 1 > 1, then go
back to step 1 with T ′ in place of T . (If n− 1 = 1, stop; we’ve written down all the edges.)

Here is an example. Consider the following tree:

v1 v3 v5 v7

v4 v2

v6

We will delete the vertices v1, v3, v4, v5, v6, v2 in that order, and we will write down the encoding
(1, 4), (3, 4), (4, 6), (5, 2), (6, 2), (2, 7).

2



Here’s the step-by-step breakdown of how we get the encoding:

Write down (1, 4)

v1 v3 v5 v7

v4 v2

v6

Write down (3, 4)

v3 v5 v7

v4 v2

v6

Write down (4, 6)

v5 v7

v4 v2

v6

Write down (5, 2)

v5 v7

v2

v6

Write down (6, 2)

v7

v2

v6

Write down (2, 7)

v7

v2

Let’s make up a name for an encoding like (1, 4), (3, 4), (4, 6), (5, 2), (6, 2), (2, 7): call it a “deletion
sequence”, because it is a sequence of edges we delete from the tree. (This is not an official
term.)

2.2 Eliminating redundancy

First, here is an example of the redundancy. Suppose I erase one number in the deletion sequence:
I leave you with

(1, 4), (3, 4), ( , 6), (5, 2), (6, 2), (2, 7).

Can we recover the number that was there? Yes! As we delete vertices from this tree, each vertex
will eventually be a leaf, and each vertex except for v7 will be deleted. So the first numbers in the
pairs should be 1, 2, 3, 4, 5, 6 in some order. We are missing 4, so 4 must go in that blank.

Here is a more complicated example. Suppose I erase two numbers, and only give you the following
information:

(1, 4), (3, 4), ( , 6), ( , 2), (6, 2), (2, 7).

By our earlier reasoning, we know that the two blanks must contain 4 and 5 in some order. You
might think that either order could work.

However, looking ahead, we see that there are no later edges that contain 4 or 5. So after the edges
v1v4 and v3v4 are deleted, both v4 and v5 must be leaves. Our rule is to pick the leaf vi with the
smallest i at every step. So we must have picked v4 before v5, and therefore the labels are 4 and 5
in that order.

In fact, even if I erase the first number in every pair, we can fill in the blanks in

( , 4), ( , 4), ( , 6), ( , 2), ( , 2), ( , 7).

We will give a systematic rule for this later, but here’s the idea. Since the six blanks must be
1, 2, 3, 4, 5, 6 in some order, we know how many times each number shows up, so we can deduce the

3



degree sequence

deg(v1) = 1, deg(v2) = 3, deg(v3) = 1, deg(v4) = 3, deg(v5) = 1, deg(v6) = 2, deg(v7) = 1.

This means that from the start, v1, v3, v5, v7 are leaves. We always delete the smallest leaf, so the
first blank is 1, and the second blank is 3. At that point, v4 has lost two neighbors, so it is also a
leaf, and 4 is smaller than 5 or 7, so it goes in the third blank. If we keep going like this, we’ll end
up writing 5, then 6, then 2.

There is one more element of redundancy. The second coordinate of the last pair is always 7 (in
general, n), because vn is always the last vertex left. So we don’t need to write it down, either.

The remaining numbers (44622 in this example) are the Prüfer code of the tree. Given the Prüfer
code 44622, we can fill in the blanks in

( , 4), ( , 4), ( , 6), ( , 2), ( , 2), ( , ),

and recover the edges of the tree.

If we wanted to directly write down the Prüfer code 44622, we’d follow the same edge-deletion
algorithm that we did previously, but we’d write down less information. Here’s how it would
go:

Write down 4

v1 v3 v5 v7

v4 v2

v6

Write down 4

v3 v5 v7

v4 v2

v6

Write down 6

v5 v7

v4 v2

v6

Write down 2

v5 v7

v2

v6

Write down 2

v7

v2

v6

Stop

v7

v2

To describe how we recover the deletion sequence from the Prüfer code in general, we need to prove
two lemmas:

Lemma 2.1. If a sequence (a1, b1), (a2, b2), . . . , (an−1, bn−1) is the deletion sequence of a tree with
vertices v1, v2, . . . , vn, then it has the following properties:

1. For every k from 1 to n− 1, the number ak is the smallest positive number not contained in
the set {a1, . . . , ak−1} ∪ {bk, . . . , bn−1}.

2. The last number bn−1 is n.

4



Proof. After the first k − 1 steps of the algorithm, which of the vertices among {v1, v2, . . . , vn−1}
are leaves? Vertex vi is a leaf of that tree exactly when (1) i does not appear in {a1, . . . , ak−1}, or
else vi would have already been deleted, and (2) i does not appear in {bk, . . . , bn−1}, or else vi has
other vertices “hanging off of it”.

We delete the leaf with the smallest index, so ak is the smallest number that satisfies both properties.

The second property is easy: the operation of deleting the smallest leaf never deletes vertex vn, so
vn must be the last vertex left in the tree, and therefore we write down n as bn−1.

The reason to prove these two properties in particular is the following lemma:

Lemma 2.2. Suppose that a sequence (a1, b1), (a2, b2), . . . , (an−1, bn−1), where every element is a
pair of numbers from 1 to n, has the two properties in Lemma 2.1. Then it is the deletion sequence
of a tree with vertices v1, v2, . . . , vn.

Proof. Some observations, first. The first half of property 1, which says that ak /∈ {a1, a2, . . . , ak−1},
implies that the n − 1 numbers a1, a2, . . . , an−1 are all distinct; also, none of them are equal to
bn−1 = n, so they are a permutation of {1, 2, . . . , n − 1}. Also, since none of a1, a2, . . . , ak are
allowed to equal bk, but bk is an integer from 1 to n, we must have bk ∈ {ak+1, . . . , an−1, n}.

Now, let’s work backwards. Start from a tree with one vertex, vn, and no edges. Then on step k,
where k counts backwards from n− 1 to 1, we add an edge vivj , where (i, j) = (ak, bk).

Because j = bk ∈ {ak+1, . . . , an−1, n}, vertex vj is already in the graph we’ve built. Because
i = ak /∈ {bk, . . . , bn−1} (by property 1) and i = ak /∈ {ak+1, . . . , an−1} (by our earlier observations),
vertex vi is new to the graph. So we’re adding a new leaf vertex to our graph, which means we will
continue to have a tree at each step.

A vertex vi, with 1 ≤ i ≤ n− 1, appears in the tree after step k if i ∈ {ak, . . . , an−1} (equivalently,
if i /∈ {a1, . . . , ak−1}. Moreover, vi is a leaf exactly when i /∈ {bk, . . . , bn−1}: when we didn’t add
new vertices adjacent to v−i after adding vi. These are exactly the conditions in the lemma, and
since ak is the smallest number satisfying them, it is the smallest number of any leaf. Therefore the
edge vivj with (i, j) = (ak, bk) is exactly the edge we delete to get the deletion sequence, proving
the lemma.

2.3 Reconstructing trees from Prüfer codes

We know how to take a tree and write down a Prüfer code like “44622” from it. Now let’s figure
out how to work backwards. Suppose that we are given an arbitrary code b1b2 . . . bn−2. How can
we find the original tree?

Let’s write down what we know about the deletion sequence of that tree, even if there’s still some
blanks to be filled in:

( , b1), ( , b2), . . . , ( , bn−2), ( , ).

We immediately fill in the last blank, bn−1, with the value n: that’s always the second number in
the last pair. Now we’ve got

( , b1), ( , b2), . . . , ( , bn−2), ( , n).

5



Next, we fill in the other blanks with some values a1, a2, . . . , an−1. We go from left to right, and the
rule that we follow is exactly the rule in Lemma 2.1 and Lemma 2.2: we pick ak to be the smallest
positive integer not contained in the set {a1, . . . , ak−1} ∪ {bk, . . . , bn−1}.

How do we know this always gives us a number from 1 to n? Well, there’s n possibilities in that
range. At most k−1 of the are eliminated by ruling out a1, . . . , ak−1, and at most n−k are eliminated
by ruling out bk, . . . , bn−1. This still leaves at least one possibility, because n− (k− 1)− (n− k) =
1.

So we can always follow this procedure. What’s more, once we’re done, the resulting sequence

(a1, b1), (a2, b2), . . . , (an−2, bn−2), (an−1, bn−1)

really is the deletion sequence of some tree: that’s what Lemma 2.2 tells us! Also, the only rules we
used to fill in the blanks are the rules that came from Lemma 2.1, which must hold for any deletion
sequence. So we know that we’ve reconstructed the unique deletion sequence that corresponds to
the Prüfer code b1b2 . . . bn−2.

3 Applications of Prüfer codes

3.1 Counting trees with Prüfer codes

Let’s wrap up the story of Prüfer codes by showing how finding a way to encode trees lets us count
trees.

Theorem 3.1 (Cayley). There are exactly nn−2 labeled n-vertex trees.

Proof. A Prüfer code of an n-vertex tree is a sequence b1b2 . . . bn−2, where each element b1, b2, . . . , bn−2

is an integer from 1 to n. This means that there are exactly nn−2 possible Prüfer codes.

Given a Prüfer code, not only can we always “fill in the blanks” to recover a deletion sequence, but
the only tools we need to do so are the two properties in Lemma 2.1, which must hold for every
deletion sequence. This means that there is a unique deletion sequence corresponding to every
Prüfer code. Therefore there are nn−2 possible deletion sequences.

Each deletion sequence tells us every single edge of the tree it came from, and every tree has a
uniquely-defined deletion sequence. Therefore there are nn−2 possible labeled n-vertex trees.

3.2 Information hidden in Prüfer codes

The Prüfer code of a tree actually contains a surprising amount of information about the tree.

Proposition 3.2. In the Prüfer code of a tree where deg(vi) = k, the number i appears k−1 times.

Proof. When we fill in the blanks in the sequence

( , b1), ( , b2), . . . , ( , bn−2), ( , )

we are going to use each of the numbers 1, 2, . . . , n once. The number n is going to fill in the second
blank of the last pair, and the numbers in the first blanks are a permutation of 1, 2, . . . , n− 1.

6



Therefore if a number i appears k − 1 times in the Prüfer code, it appears k times in the final
sequence

(a1, b1), (a2, b2), . . . , (an−1, bn−1).

But this sequence is just directly telling us what the edges of the tree are: if a number i appears
k times in this sequence, that means that vi appears in k edges. Therefore deg(vi) = k: one more
than the number of times i appears in the Prüfer code.

For instance, the Prüfer code 44622 from our previous example can only be the Prüfer code of
a tree with vertices v1, v2, v3, v4, v5, v6, v7 in which deg(v2) = 3, deg(v4) = 3, deg(v6) = 2, and
deg(v1) = deg(v3) = deg(v5) = deg(v7) = 1.

Many counting problems about labeled can be solved very quickly with the use of Proposition 3.2.
For example:

Corollary 3.3. There are (n− 1)n−2 trees with vertex set {v1, v2, . . . , vn} in which vertex v1 is a
leaf.

Proof. By Proposition 3.2, vertex v1 is a leaf (has degree 1) if and only if the number 1 never
appears in the Prüfer code. There are (n− 1)n−2 such codes: there are n− 1 possibilities for each
value in the code, and n− 2 values. Therefore there are (n− 1)n−2 such trees.

7



4 Practice problems

1. Find the trees with the following Prüfer codes:

(a) 11111.

(b) 123456.

(c) 3141592.

2. Find the Prüfer codes of the following trees:

v9v8

v5v6

v3 v2

v1

v4

v7
v5 v3 v6 v4

v1 v2
v7

v8

v3

v4
v2

v6

v7 v8

v9
v1

v5

(One of these Prüfer codes gives you my birth date. Another is the first few digits of Euler’s
number e. Another tells you the phone number to call to reach Ghostbusters.)

3. Find all 16 trees with vertices {v1, v2, v3, v4}. (Prüfer codes are not very useful here.)

4. What does the Prüfer code look like for a tree with vertices {v1, v2, . . . , vn} when. . .

(a) . . . that tree is a star (it is isomorphic to K1,n−1)? How many such trees are there?

(b) . . . that tree is a path (it is isomorphic to Pn)? How many such trees are there?

5. Use Prüfer codes and Proposition 3.2 to count:

(a) The number of trees with vertex set {v1, v2, . . . , vn} in which v1 has degree 3.

(b) The number of trees with vertex set {v1, v2, . . . , vn} in which v1 has degree n− 2.

(c) The number of trees with vertex set {v1, v2, v3, v4, v5, v6} where deg(v1) = deg(v2) = 3
and deg(v3) = deg(v4) = deg(v5) = deg(v6) = 1.

For parts (b) and (c), think about how you would count them without using Prüfer codes.

6. Use Corollary 3.3 to find the average number of leaves in an n-vertex labeled tree.

7. Prove that if a tree has maximum degree d, then it has at least d leaves:

(a) Using Prüfer codes and Proposition 3.2.

(b) Using ideas from the previous lecture.

8. Each possible edge vivj is contained in f(n) of the nn−2 trees with vertex set {v1, v2, . . . , vn}.
By symmetry, f(n) is the same for any edge vivj .

(a) Determine and prove a formula for f(n).

(b) Let K−
n be the complete graph with a single edge deleted. (Up to isomorphism, it doesn’t

matter which edge.) Find the number of spanning trees that K−
n has, in terms of n.

8


	Counting problems about trees
	The labeled tree problem
	Counting encodings

	Prüfer codes
	Writing down all the edges
	Eliminating redundancy
	Reconstructing trees from Prüfer codes

	Applications of Prüfer codes
	Counting trees with Prüfer codes
	Information hidden in Prüfer codes

	Practice problems

