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1 What are planar graphs?

Our next topic is understanding the question: when can we draw a picture of a graph in which
none of the edges cross?

Sometimes answering this question is easy. For example, the graph on the left (the complete graph
K4) has two crossing edges, but we can fix this just by drawing one of the two edges differently:

Sometimes answering this question is hard. Both of the graphs below are drawn with many cross-
ing edges. For one of them, this can be fixed; for there other, there is no way to avoid edges
crossing.

However, it is far from obvious which graph has which property. We will need to develop some
tools before we can answer this question.

1.1 Fine print

It’s important to distinguish between “a graph that can be drawn in the plane with no crossings”
and “a drawing of a graph in the plane with no crossings”.

The first of these is a graph property. If G and H are isomorphic, and we can draw G in the plane
with no crossings, then we can draw H in the plane with no crossings: just relabel the drawing of
G. We say that a graph we can draw on the plane with no crossings is a planar graph.

A planar graph is still just an abstract object: a set of vertices and a set of edges. We haven’t
picked a particular drawing for it, and there could be many drawings that are different from each
other in important ways. We say that a plane embedding of a graph G is a drawing of G in the
plane with no crossings. (It is also very common to call this a “plane graph”, but distinguishing
between two different things called “planar graph” and “plane graph” could get confusing.)

A planar graph, then, is a graph that has a plane embedding.
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We should be careful when talking about properties of a plane embedding of G: they are not
properties of the graph G itself, unless we can prove that all plane embeddings of G share those
properties. We will see some examples and non-examples soon.

We will occasionally have reason to talk about plane embeddings ofmultigraphs, rather than graphs.
This will not come up when deciding if a graph is planar or not: a multigraph is planar if and only
if its simplification (the graph we get by eliminating loops and multiple copies of edges) is planar.
But we sometimes want to consider plane embeddings of multigraphs as objects of study.

1.2 The utility graph

The three utilities problem is a classic graph theory puzzle. We have three houses that need to
be connected to the water, gas, and electricity companies. Each of the 9 connections that need
to be made is a separate pipeline (or wire, I guess); can this be done without any of the lines
crossing?
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In other words, is the complete bipartite graph K3,3 a planar graph?

(Due to the connection with this problem, K3,3 is sometimes called the utility graph.)

Theorem 1.1. The graph K3,3 is not planar.

Proof. The utility graph contains a Hamiltonian cycle with houses and utilities alternating. If a
plane embedding of K3,3 exists, that cycle must appear as a hexagon in that plane embedding. The
hexagon could be very distorted; it could be concave and funny-shaped. However, we can always
move parts of the embedding around to make it a regular hexagon, forming the following shape:
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There are three more edges that need to be drawn. Each house still needs to be connected to the
utility directly across it in the hexagon.

• If we draw two of the three edges inside the hexagon, they will have to cross. So at most one
of the three edges can be inside the hexagon.

• If we draw two of the three edges outside the hexagon, they will have to cross. So at most
one of the three edges can be outside the hexagon.

One edge is left that can neither be inside nor outside! Therefore K3,3 is not planar.
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2 Faces

2.1 Faces and face lengths

The edges of a plane embedding divide the plane into regions called the faces. There can be several
“internal” or “bounded” faces, and there is always one “external” or “unbounded” face that extends
outward infinitely far. Here is an example:

F1 F2

F3

v

w x

y z

Here, F1 and F2 are the two internal faces, and F3 is the external face.

In sufficiently nice embeddings, the boundary of a face is a cycle in the graph. Above, we see a
plane embedding where the boundary of F1 is the cycle (v, y, w, v), for example, and the boundary
of F3 is the cycle (v, y, z, x, w, v). In such cases, we say that the length len(F ) of a face F is the
length of the cycle bounding it: therefore, len(F1) = 3, len(F2) = 4, and len(F3) = 5 in the example
above.

Sometimes, this can go wrong:

F1

F2

p q r

s
t

u v

w x y

Although the cycle (p, q, x, w, p) is all that separates face F1 from the outside world, we don’t want
to neglect edge ps as well. So we say that the boundary of F1 is the closed walk (p, s, p, q, x, w, p),
and len(F1) = 6: the length of this closed walk.

For F2, things are even worse: its boundary consists of the two cycles (q, r, y, x, q) and (t, u, v, t).
We define len(F2) = 4+3 = 7 in such a case: the total length of the two cycles. (This sort of thing
only happens when the graph is not connected.)

We define the length of a face in this way so that every edge makes two contributions to the lengths
of faces: it contributes +1 to the length of the two faces on either side of that edge. (Sometimes,
as in the case of face F1 and edge ps in the example above, this means contributing to the length
of the same face twice.)

It follows that the faces and edges of a plane embedding obey the following formula: if there are
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m edges and k faces F1, F2, . . . , Fk, then

k∑
i=1

len(Fi) = 2m.

All of the above continues to apply for multigraphs (where we might see faces of length 1 or 2).
In the case of multigraphs, it matters which of several parallel edges is part of the boundary of a
face—so don’t forget to keep track of this.

2.2 Euler’s formula

The face length sum formula is one of two important identities regarding the faces of a plane
embedding. The other one is Euler’s formula, which helps us count faces in a planar graph.

Theorem 2.1 (Euler’s formula). If a connected plane embedding (of a graph or a multigraph) has
n vertices, m edges, and f faces, then

n−m+ f = 2.

Proof. We induct on the number of edges, m. Our base case is m = n − 1: the least number of
edges in a connected graph.

In this case, the graph is a tree. All trees are planar (we don’t need this for the proof, but it’s a good
exercise to do on your own). However, plane embeddings of trees only have one face: separating
the plane into two regions requires a cycle. So in this case, n−m+ f = n− (n− 1) + 1 = 2.

Now suppose Euler’s formula holds for all (m − 1)-edge plane embeddings, and we have a plane
embedding of a graph with m edges, where m ≥ n. In this case, the graph has at least one cycle;
let e be any edge on a cycle.

In the plane embedding, the cycle separates the plane into two pieces (each of which might be made
up of multiple faces). In particular, there are two different faces on the two sides of edge vw. So if
we delete the edge e, we are left with:

• A connected n-vertex plane embedding, since we deleted an edge on a cycle;

• Only m− 1 edges, since we deleted one;

• Only f − 1 faces, since the two faces on either side of vw merge into a single face.

By the inductive hypothesis, the new plane embedding satisfies Euler’s formula: n − (m − 1) +
(f − 1) = 2. This simplifies to n −m + f = 2, so Euler’s formula also holds for the m-edge plane
embedding we started with.

By induction, the formula holds for all plane embeddings.

Corollary 2.2. If a plane embedding has n vertices, m edges, f faces, and k connected components,
then

n−m+ f − k = 1.
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Proof. We can add k− 1 edges to make the plane embedding connected. This does not change the
number of faces: if we add an edge between two different connected components, it lies entirely in
the face touching both compoents, and that face still remains a single face.

For the new plane embedding, Euler’s formula says that n− (m+ k − 1) + f = 2, which simplifies
to n−m+ f − k = 1.

2.3 “Faces of a graph”

Faces are a property of a plane embedding. It is not okay to talk about the faces of a planar graph,
because those faces are not necessarily determined before we have picked a plane embedding of a
graph.

Consider the following five plane embeddings of the same graph G:

The faces here look very different! All of them have four faces of length 3, but:

• In the first plane embedding, there is a length-4 face and a length-8 face (the external face).

• In the second plane embedding, there is a length-5 face, and a length-7 face (the external
face).

• In the third plane embedding, there are two length-6 faces.

• The fourth and fifth plane embedding matching the second and first in the face lengths.
However, they swap which face is the external face! In the last plane embedding, there is a
length-4 face and a length-8 face, but it’s the length-4 face which is external.

Therefore it makes no sense to talk about the faces of a planar graph. If two people have the same
graph, and both draw plane embeddings, their plane embeddings might not have the same faces,
and they will be confused.

However, we can say two things:

1. All plane embeddings of the same graph have the same number of faces. This is because
everything except for f in Euler’s formula is determined by the graph, so f must be as well.

2. The sum of face lengths is determined by the graph, because it’s equal to 2m: twice the
number of edges in the graph.
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3 Practice problems

1. Consider the following planar multigraph:

e1 e2

v w

x

y z

Draw the following plane embeddings:

(a) One where the external face is a 3-cycle through vertices w, x, z using edge e1, and the
internal faces have lengths 2, 4, and 5.

(b) One where the external face is a 4-cycle through vertices v, w, z, y using edge e1, and the
internal faces have lengths 3, 3, and 4.

(c) One where the external face is a 2-cycle using edges e1 and e2.

2. Let G be a connected planar graph. Suppose that a plane embedding of G has f faces, all of
length 4.

(a) Use the face length sum formula to find the number of edges of G (in terms of f).

(b) Use Euler’s formula to find the number of vertices of G (in terms of f).

(c) Can you find such a graph for f = 8? What about for f = 10?

3. Use an argument similar to the proof of Theorem 1.1 to show that the complete graph K5 is
not planar. First, embed a 5-cycle in K5 as a regular pentagon, then reason about where the
remaining 5 edges can go.

4. Prove that all trees are planar graphs. Moreover, show that any tree has a plane embedding
in which all the edges are straight lines.

(Hint: use induction. You’ll need to show that if v is a leaf of T , then a plane embedding of
T − v can be extended to a plane embedding of T .)

5. Take a triangle and connect each vertex to the center of the opposite side, creating six
triangles. Then repeat this process with each of the triangles formed. This procedure is
called barycentric subdivision, and its first few stages are shown below:

Determine the number of vertices in the nth stage of this process.
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