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Lecture 21: Planarity testing

October 24, 2024 Kennesaw State University

1 Triangulations

1.1 The number of edges in a planar graph

Last time, we proved Euler’s formula: in a connected plane embedding with n vertices, m edges,
and f faces, n−m+ f = 2. We also know that if we sum the lengths of all faces, then we get 2m:
twice the number of edges. Now we will use these ideas to bound the number of edges in a planar
graph.

For this, we will have to restrict our attention to simple graphs only, even though Euler’s formula
is true for multigraphs as well. There is just no hope of getting any results otherwise: adding loops
or parallel edges lets us increase the number of edges as much as we like, but it will never interfere
with planarity.

What distinguishes planar graphs from planar multigraphs? It is the following claim: in a plane
embedding of a simple graph with at least 2 edges, every face has length at least 3. There are really
two cases here:

• If the plane embedding has multiple faces, they must be separated somehow; the only way to
do this is with a closed curve in the plane. If the boundary of a face contains a closed curve,
this corresponds to a cycle in the graph—and in a simple graph, every cycle has length at
least 3.

• If the plane embedding has only one face, it has length 2m. When the graph has at least 2
edges, the length of this faces is also at least 3 (and we can even say that it’s at least 4).

When this fact applies, if we sum the lengths of all f faces, we get at least 3f . This gives us an
inequality between f and m (assuming n ≥ 3): 2m ≥ 3f . We can use this inequality to prove the
following theorem:

Theorem 1.1. If G is a planar graph with n ≥ 3 vertices and m edges, then m ≤ 3n− 6.

Proof. We may assume that G is connected; if not, we can add some edges to a plane embedding
of G to connect it without ruining planarity. Since n ≥ 3 and G is connected, m ≥ n− 1 ≥ 2, so it
is valid to apply our reasoning above: every face in a plane embedding of G has length at least 3.

Combining Euler’s formula n−m+ f = 2 with the inequality 2m ≥ 3f , we get

2− n+m = f ≤ 2

3
m

which we can rearrange to 1
3m ≤ n− 2, or m ≤ 3n− 6.
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Theorem 1.1 lets us immediately conclude that some graphs are not planar. For example, the
complete graph K5 has n = 5 vertices and m = 10 edges. We have 10 > 3 · 5 − 6; therefore K5

cannot have a plane embedding.

Note, however, that Theorem 1.1 is a necessary condition, not a sufficient one. If m ≤ 3n − 6,
we cannot conclude that a graph is planar! Here’s a boring example: take K5, and then add 95
isolated vertices. Here, n = 100 and m = 10, so m is much less than 3n− 6; but the graph is still
not planar. (We will see less boring examples later today.)

1.2 Looking at the extreme cases

Whenever we prove an inequality, a natural question to ask is: what can we say about the cases
where equality holds? What kind of planar graphs have m = 3n− 6?

To draw conclusions about such graphs, we should look back at our proof, and look at every place
where an inequality appeared:

1. We said “We may assume G is connected” on the basis that if it’s, not, we can get a connected
planar graph with the same number of vertices, but more edges.

So if a planar graph satisfies m = 3n− 6, it must be connected.

2. Our inequality m ≤ 3n−6 came from the inequality 2m ≥ 3f . If we had 2m > 3f , we’d have
gotten m < 3n− 6, instead, by the same argument.

So if a planar graph satisfies m = 3n− 6, it must satisfy 2m = 3f .

3. Our argument for 2m ≥ 3f came from an inequality we only stated in words: every face has
length at least 3.

So if a planar graph satisfies m = 3n − 6 (and therefore satisfies 2m = 3f), then every face
must have length exactly 3 (in every plane embedding).

Such a plane embedding (a connected plane embedding in which all faces are triangles) is called a
triangulation. In fact, we can show that:

Corollary 1.2. For a planar graph G with n ≥ 3 vertices, the following are equivalent:

(i) G has 3n− 6 edges.

(ii) Every plane embedding of G is a triangulation.

(iii) G is a maximal planar graph: if we add any edge to G, it stops being planar.

Proof. We have already proven that (i) ⇐⇒ (ii). We have exactly 3n−6 edges if and only if every
inequality in the proof of Theorem 1.1 is an equality: if and only if every face has length exactly 3.

We also have (i) =⇒ (iii) just from the inequality m ≤ 3n−6. If a graph has exactly 3n−6 edges,
and we add an edge, it has more than 3n− 6 edges, so it can no longer be planar.

The new part is that (iii) also implies (i) and (ii): there are no maximal planar graphs that “get
stuck” before becoming a triangulation with 3n− 6 edges. We will show that (iii) implies (ii). . .
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. . . by showing the contrapositive: if G has an embedding that’s not a triangulation, then G is not
a maximal planar graph. Essentially, the argument is that if a plane embedding of G has a face F
with len(F ) ≥ 4, then we can add an edge between two of its vertices, drawing it inside F .

A few cases have to be considered to show that we can pick an edge that does not already exist
outside F . This is tedious and not particularly educational, but I’m including it in these notes for
completeness.

• If F is a cycle of length at least 5, then not all “chords” of that cycle can be edges of G.
Otherwise, the vertices of the cycle would induce a Kn subgraph for n ≥ 5. However, we
already know that such graphs are not planar.

• If F is a cycle of length 4, and the two “chords” both existed outside the cycle, they’d have to
cross. How do we know this? If they didn’t cross, we could create a plane embedding of K5

by putting a new vertex in the middle of F adjacent to all its vertices. But we know that K5

is not a planar graph.

• If F is not a cycle, then it has an “outside” cycle and one or more vertices on the inside—as
in the diagram I’m including below from an earlier lecture.

F1

F2

p q r

s
t

u v

w x y

Each vertex on the boundary of F that’s strictly inside F is connected to the outside cycle
by at most one edge, so we can draw any of the other edges to the outside cycle.

In all cases where len(F ) ≥ 4, we have found an additional edge we can draw and still have a plane
embedding.

2 Subdivisions

2.1 Some more graphs that are not planar

Earlier today, we saw that K5 was not planar, because it has too many edges.

We can get another example of a nonplanar graph as follows: take an edge vw of K5, and replace
it by a long v − w path through entirely new vertices. The “before” and “after” of this procedure
are shown below:

v

w

v

w
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The second graph here has 9 more vertices and 9 more edges than K5: n = 14 and m = 19. This
comfortably satisfies the inequality m ≤ 3n− 6.

However, the second graph is still not planar. Any plane embedding of the second graph would
immediately give us a plane embedding of K5: just replace the drawing of the long v − w path by
a drawing of the edge vw that traces out the same curve in the plane. Since K5 is not planar, the
second graph cannot be planar, either.

The general notion here is called a “subdivision”. To subdivide an edge vw means to create
a new vertex x, and replace edge vw by edges vx and xw. A subdivision of a graph G is a
graph H obtained from G by subdividing edges some number of times. To make the statement of
Kuratowski’s theorem simpler later, we say that G itself is also a subdivision G.

(In the example above, we subdivide edge vw, then subdivide the new edges created; every time
we subdivide an edge along the v − w path, it makes the path longer.)

For the same reasons as with the first example, if H is a subdivision of G, then they are either both
planar or both not planar.

2.2 Kuratowski’s theorem

So far, we have shown two graphs to be nonplanar: K5 and K3,3. As a consequence, a subdivision
of K5 or K3,3 cannot be planar. Moreover, if a graph G contains a subdivision of K5 or K3,3 as a
subgraph, then G cannot be planar: we can’t even find a plane embedding of that subgraph of G,
much less all of G.

The reason I emphasize K5 and K3,3 in particular is because of the following theorem (which we
will state, but not prove, because the proof is very long).

Theorem 2.1 (Kuratowski). If a graph G is not planar, then G contains a subdivision of K5 or
K3,3 as a subgraph.

This is a sort of “guarantee of proof” theorem. In principle, it is easy to give a proof that G is a
planar graph: just draw a plane embedding of G. (Finding the plane embedding may, admittedly,
be very hard. But at least we know that if G is planar, then such a demonstration exists.) However,
proving that G is not a planar graph could be hard. Kuratowski’s theorem says that if G is not
planar, then we can always point out a subgraph of G that is a subdivision of K3,3 or K5, and then
we have a proof that G is not planar. For example:

Claim 2.2. The Petersen graph is not planar.

Proof. Here is a subdivision of K3,3 inside the Petersen graph:

By Kuratowski’s theorem, the Petersen graph is not planar.
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Okay, but how do we find this subdivision? Some part of the process is creativity, but there are
standard tricks we can try.

• Any subdivision of K5 contains five vertices of degree 4: the vertices corresponding to the
vertices of the original K5. The Petersen graph does not have any such vertices, so it cannot
contain a subdivision of K5.

This tells us that we must be looking for a subdivision of K3,3, instead.

• In general, we’d want to pick the high-degree vertices to play the key roles in this subdivision.
This doesn’t help us here, though, because all vertices of the Petersen graph are identical.

• It can help to think of a subdivision of K3,3 as picking vertices v1, v2, v3, w1, w2, w3, and then
finding nine paths: a vi − wj path for every i and j. These paths cannot share any of their
vertices apart from the endpoints.

To find nine such paths in a graph this small, most of the paths must be very short. So it
makes sense, at least as a first try, to pick an arbitrary vertex to be v1 and then its neighbors
to be w1, w2, w3. That takes care of the v1 −w1, v1 −w2, and v1 −w3 paths; we just have to
locate v2 and v3.

• We can also think of K3,3 and K5 as cycles with some additional edges. Specifically, K3,3

is a cycle (v1, w1, v2, w2, v3, w3, v1) with the extra edges v1w2, v2w3, v3w1. K5 is a cycle
(v1, v2, v3, v4, v5, v1) with the extra edges v1v3, v1v4, v2v4, v2v5, v3v5.

So we can start our process by finding a long-ish cycle: for example, we can start with a cycle
of length 8 or 9 in the Petersen graph if we want to recover the subdivision in the diagram.
Then, find paths to take the place of the “extra edges”.

3 Extensions of the triangulation bound

The test for planarity that we get from Kuratowski’s theorem is useful because it’s guaranteed to
give us an answer. However, the test of Theorem 1.1 is more convenient, when it applies, because
it’s much easier to count edges than to look for subdivisions.

One thing that we can do to make the test more powerful is to look for situations when the upper
bound is stronger than 3n− 6.

3.1 Bipartite planar graphs

Let G be a bipartite planar graph. Then what can we say about face lengths in a plane embedding
of G?

They must be even: the boundary of a face consists of one or more closed walks, and in a bipartite
graph, all closed walks have even length. In a connected, simple graph with at least 3 vertices, the
smallest even length of a face is 4. This lets us replace the inequality 2m ≥ 3f in the proof of
Theorem 1.1 with a stronger inequality: 2m ≥ 4f .

We can, as before, combine this inequality with n −m + f = 2 (assuming G is connected, which
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we can always do in an upper bound). This gives us

2− n+m = f ≤ 2

4
m.

Simplifying, we conclude the following:

Theorem 3.1. If G is a planar bipartite graph with n ≥ 3 vertices and m edges, then m ≤ 2n− 4.

To appreciate the strength of Theorem 3.1 as compared to Theorem 1.1, we can use it to prove
a result from last time more easily. Theorem 3.1 implies that K3,3 is not planar! K3,3 has n = 6
vertices and m = 9 edges, which exceeds the upper bound of 2n− 4 = 8.

3.2 Optional: girth and planarity

We can further generalize Theorem 3.1 by looking at shortest cycles. Let’s define the girth of a
graph G to be the length of the shortest cycle in G. (This is always at least 3, and in bipartite
graphs it is always at least 4.) In an acyclic graph, the girth is sometimes defined to be ∞, but
that will not serve our purposes today, and in any case, we don’t need a planarity test for acyclic
graphs: all forests are planar.

Theorem 3.2. Let G be a planar graph with at least one cycle.

If G has n ≥ 3 vertices, m edges, and girth g, then m ≤ g
g−2(n− 2).

Proof. First of all, let’s carefully look at what the girth tells us about the length of a face. In the
very nicest case, the boundary of each face is a cycle. Then, the girth tells us that every face in
a plane embedding of G has girth at least g. However, things might not be so nice: the boundary
might consist of multiple closed walks.

Fix a particular face F , and let G′ be the subgraph of G which we obtain by deleting every edge
which appears twice in the boundary of F . Then G′ also has a plane embedding we can draw
directly from the plane embedding of G, and F is also a face of that plane embedding: the edges
we deleted separate F from F , not F from any other face. The boundary of F has only gotten
shorter in G′. But (with an exception we’ll get to later) in G′, the boundary of F consists of one
or more cycles, which all have length at least g; therefore F has length at least g as well, in G′ and
in the original graph G.

The exception is this. More precisely, we can say that in G′, every remaining component of the
boundary of F is a cycle. But what if F has no boundary left in G′ at all? What if G′ is just a
collection of isolated vertices? This happens if we started out with a graph G that was a forest—in
which F is the only face. For this reason, we add a condition to our theorem: G must have at least
one cycle.

Now we can continue as before. Assume our graph G is connected, by adding edges to make it so,
if necessary. Then we have two conditions: n−m+ f = 2 from Euler’s formula, and 2m ≥ fg, via
the sum of face lengths. As before, we get an inequality

2− n+ fm = f ≤ 2

g
·m

which simplifies to m ≤ g
g−2(n− 2), the inequality we wanted.
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4 Practice problems

1. The two graphs below were used as an example in the previous lecture.

One of these is planar, and the other one is not.

(a) Identify the planar graph, and draw a plane embedding.

(b) For the other graph, find a subdivision of K3,3 or K5 to show that it is not planar.

2. Take Theorem 3.2 for a spin by using it to prove that the Petersen graph is not planar.

3. Determine which of the five connected 3-regular graphs (all shown below) are planar, and
which are not.

4. Find two non-isomorphic planar graphs with 6 vertices and 12 = 3 · 6 − 6 edges, and prove
that they are not isomorphic.

5. What is the maximum number of edges in an n-vertex planar graph if we know it has a plane
embedding with two faces of length 6?

6. Let G be a graph with n vertices and n+ 3 edges obtained by starting with the cycle graph
Cn and adding 3 more edges.

When is G planar, and when is G not planar?

7. An outerplanar graph is one which has a plane embedding in which all the vertices lie on the
outer face (the unbounded one).

(a) Prove an upper bound on the number of edges in an n-vertex outerplanar graph. (You
may assume n ≥ 2; when n = 1 the upper bound is of course 0.)

(b) Prove that K4 and K2,3 are not outerplanar graphs. (K2,3 is trickier.)
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