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1 Polyhedra

1.1 Polyhedra and graphs

A polyhedron (plural: polyhedra) is the 3-dimensional version of a polygon: it’s a 3D shape with
polygonal sides. The sides meet at edges, and the edges meet at corners which are also called
vertices. This is not a coincidence: if we have a polyhedron, we can form its skeleton graph
whose vertices are the corners of the polyhedron, and whose edges are the geometrical edges of the
polyhedron.

We have already seen the cube graph Q3 in many examples; this is the skeleton graph of a cube.
As we will prove today, the cube is one of five Platonic solids: polyhedra whose faces are identical
regular polygons, with the same number of faces meeting at each vertex. Here they are:

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

What’s the connection to things we’ve done before in this class? Well, all five of these graphs are
planar graphs. (More precisely, whenever we have a polyhedron with no holes in it—one that can
be drawn on the surface of a sphere—the skeleton graph is a planar graph.)

To get a plane embedding of one of these graphs, you should imagine taking one face of the
polyhedron and stretching it out until everything else fits inside it. Alternatively, with care, you
can draw the embedding directly, just by knowing how many sides the faces have, and how many
faces meet at every vertex.

For example, here are the plane embeddings of the cube and octahedron, which are not too
messy:

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/

3322-fall-2024
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1.2 Classifying the Platonic solids

In two dimensions, there are infinitely many regular polygons. So why are there only five Platonic
solids in three dimensions? This is, in part, something we can prove from Euler’s formula. (However,
read the note at the end of this section!)

We can describe a Platonic solid by a pair (p, q) where every face has p sides, and q faces meet at
every vertex. Geometrically, we must have p ≥ 3 and q ≥ 3. Then we can narrow down the options
for p and q:

Theorem 1.1. There are only five possibilities for the pair (p, q) in a Platonic solid.

Proof. We can write down two equations for n (the number of vertices), m (the number of edges),
and f (the number of faces) in terms of p and q.

• The graph is a q-regular graph, so by the degree sum formula, nq = 2m.

• Every faces has length p, so by the face length sum formula, fp = 2m.

We also have Euler’s formula: n−m+ f = 2. Replacing n by 2m
q and f by 2m

p , we get

2m

q
−m+

2m

p
= 2 =⇒ 1

q
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2
+

1

p
=

1

m
.

From here, the constraint that lets us narrow down the pairs (p, q) is that 1
m > 0. Therefore

1
q −

1
2 + 1

p > 0, or 1
p + 1

q > 1
2 .

How can we get a total bigger than 1
2 here? Let’s do casework on p:

• If p = 3 (every face is a triangle) then 1
q > 1

2 − 1
p = 1

6 , so q < 6.

We can have q = 3 (three triangles meet at every vertex), giving us the tetrahedron.

We can have q = 4 (four triangles meet at every vertex), giving us the octahedron.

We can have q = 5 (five triangles meet at every vertex), giving us the icosahedron.

• If p = 4 (every face is a square) then 1
q > 1

2 − 1
p = 1

4 , so q < 4.

We can have q = 3 (three squares meet at every vertex), giving us the cube.

• If p = 5 (every face is a pentagon) then 1
q > 1

2 − 1
p = 0.3, so q < 1

0.3 = 31
3 .

We can have q = 3 (three pentagons meet at every vertex), giving us the dodecahedron.

These are the only possibilities: if p ≥ 6, then even q = 3 does not satisfy 1
p + 1

q > 1
2 .

In each of these cases, we can use Euler’s formula to solve for n, m, and f . For example, in the
case of the dodecahedron, we know that 3n = 2m = 5f . We could write everything in terms of m:
n = 2

3m, and f = 2
5m. Putting this in Euler’s formula, we get:

n−m+ f = 2 =⇒ 2

3
m−m+

2

5
m = 2 =⇒ 1

15
m = 2 =⇒ m = 30.

So the dodecahedron has 30 edges. Since n = 2
3m and f = 2

5m, it has 20 vertices and 12 sides.
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Here is the complete table (where ⟨q⟩ × n stands for the sequence q, q, . . . , q of length n):

Tetrahedron Cube Octahedron Dodecahedron Icosahedron

Number of vertices 4 8 6 20 12
Degree sequence ⟨3⟩ × 4 ⟨3⟩ × 8 ⟨4⟩ × 6 ⟨5⟩ × 12 ⟨3⟩ × 20

Number of edges 6 12 12 30 30

Number of faces 4 6 8 12 20
Face types × 4 × 6 × 8 × 12 × 20

You may notice that the numbers in the “cube” and “octahedron” columns are the same, just
rearranged; the “dodecahedron” and “icosahedron” columns are related similarly. This is not a
coincidence! We will explain it in the next section.

One final note: though Theorem 1.1 guarantees that (p, q) is one of {(3, 3), (3, 4), (3, 5), (4, 4), (5, 3)},
and we can solve for n,m, f in terms of (p, q), it is theoretically posssible that there are multiple
planar graphs with the same parameters n,m, f, p, q. Could there be a second icosahedron where
the faces attach differently?

It turns out there is only one possibility for each (p, q). See the practice problems for ideas about how
to prove this for the tetrahedron, cube, and octahedron. For the icosahedron and dodecahedron,
the argument is more complicated, though it boils down to checking finitely many cases.

2 Dual graphs

2.1 Definition

You may have noticed that the face length formula for plane embeddings is very similar to the
degree sum formula for graphs:

f∑
i=1

len(Fi) = 2m
n∑

i=1

deg(vi) = 2m.

This is also not a coincidence! The face length formula is just the degree sum formula applied to a
graph called the dual graph of the plane embedding, whose vertices are the faces F1, F2, . . . . We
define the dual graph to have an edge FiFj whenever faces Fi and Fj touch along an edge in the
plane embedding we started with.

Here is an example, with the original plane embedding in black and the dual graph in red. If we’re
careful, we can use the plane embedding of the original graph to find a plane embedding of the
dual graph. Just place the dual vertex corresponding to face Fi somewhere in the interior of face
Fi, and have the dual edges cross the edges of the original embedding.
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However, you also notice from this picture that the dual graph is. . . not, strictly speaking a graph.
It is a multigraph: when two faces touch along multiple edges, the dual graph has multiple edges
between the corresponding vertices. Sometimes the dual graph has loops, when an edge has the
same face on both sides.

It is also important to remember that saying “G∗ is the dual graph of G” is not, strictly speaking,
correct. The dual graph is defined in terms of a plane embedding of G; if we choose a different
plane embedding, we may get a different dual graph.

Some things do stay the same however. If G is a planar graph, then we know that the number of
vertices, edges, and faces is constant over all plane embeddings of G. In G∗, the number of edges
is the same; however, the number of vertices in G∗ is the number of faces in G, and the number of
faces in G∗ is the number of vertices in G.

2.2 Dual polyhedra

Suppose our planar graph G is the skeleton graph of a polyhedron. In this case, we can construct
G∗ in a way that reflects the polyhedron’s geometry. Let’s do the following:

1. For the dual vertex corresponding to face Fi of the polyhedron, draw a point in the center of
face Fi.

2. For the dual edge connecting adjacent faces Fi and Fj , draw a line segment between the two
points in the centers of Fi and Fj .

This is still the same procedure we used above for finding a dual graph, we’re just being more
specific about what these vertices and edges look like.

If the polyhedron is sufficiently symmetric—for example, in the case of all five Platonic solids—
this dua construction is another polyhedron. (If the polyhedron is not symmetric enough, then its
faces might not “lie flat” when we take this dual. There are other, more complicated geometric
constructions that make sense for a larger variety of polyhedra. For all of them, the underlying
graph-theoretic idea is dual of a plane embedding defined earlier.)

For example, if we draw a dual of the cube, we get the octahedron:

This explains why the parameters of the cube and octahedron are very similar: the skeleton graphs
are dual graphs! Similarly, the skeleton graphs of the dodecahedron and icosahedron are duals.
The tetrahedron’s skeleton graph, K4, is its own dual.
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3 More general polyhedra (optional)

The definition of a Platonic solid is the most restrictive generalization of a regular polygon to
three dimensions. A slightly less restrictive, and still very interesting, definition is that of an
Archimedean solid.

These are convex polyhedra whose faces are all regular polygons, and whose vertices are all symmet-
ric to each other (that is, for any two vertices, there is some rotation or reflection of the polyhedron
that can move one to the other). Notably missing from this definition is any kind of symmetry
between faces: in an Archimedean solid, the faces do not all have to be the same!

Here is an example, the truncated tetrahedron. Geometrically, this is obtained as follows: start
with a tetrahedron, and cut off each vertex a third of the way along its edge, as shown in the picture
below.

Tetrahedron

×
×

×
×

Truncated Tetrahedron

The truncated tetrahedron has two types of faces: four hexagons (left over from the original faces
of the tetrahedron) and four triangles (from where the cuts were made).

As with the Platonic solids, we can at the very least determine the global face, vertex, and edge
counts from a local description of what is happening at every vertex. Let’s see how, using the
truncated tetrahedron as an example. (Imagine that we don’t have the picture above to use as a
reference.)

Suppose that we know that at every vertex of the truncated tetrahedron, two hexagons and a
triangle meet. We can set up equations in the following variables:

1. m, the number of edges.

2. n, the number of vertices.

3. f3, the number of 3-sided faces (triangles).

4. f6, the number of 6-sided faces (hexagons).

Here’s how we can do this. As before, we have Euler’s formula, telling us that n−m+(f3+f6) = 2.
Since three faces total meet at each vertex, we know that every vertex has degree 3 in the skeleton
graph, so 2m = 3n. The new trick is how we count the faces in terms of the vertices:

• Each of the n vertices is the corner of two hexagons, so if we go through each vertex and list
the hexagons that meet there, we will make a list of 2n hexagons. However, each hexagon
will appear on this list 6 times: once for each of its corners. Therefore 2n = 6f6.

• Similarly, each of the n vertices is the corner of one triangle, so if we try to list the triangles
by going through each vertex and writing down the triangle that has a corner there, our list
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will have n triangles on it. However, each triangle will appear on this list 3 times: once for
each of its corners. Therefore n = 3f3.

(In general, these equations are determined by two quantities: the number of sides each type of
face has, and the number of faces of that type that meet at each vertex.)

Now we can write Euler’s formula solely in terms of n, by replacing each variable by a multiple of
n:

n−m+ f3 + f6 = 2 =⇒ n− 3

2
n+

1

3
n+

1

3
n = 2.

This simplifies to 1
6n = 2, or n = 12. From here, we can determine that m = 18, f3 = 4, and

f6 = 4: exactly the parameters of a truncated tetrahedron!

There is a way to make this process more systematic—and also generalize it to be able to deal with
even less regular polyhedra.

To do so, we define the angle defect at a corner of a polyhedron to be 2π minus the sum of the
angles of the polygons meeting at that corner. Since the angle defect would always be 0 if the
corner were flat, this is a measure of how much the polyhedron “bends” at a corner. It’s a very
nice measure, due to the following theorem:

Theorem 3.1 (Descartes’s formula). In any convex polyhedron, the sum of all angle defects is 4π.

Proof. This could be done by solving a system of equations, but there is a more elegant proof by
something called the “discharging method”. We take the skeleton graph of the polyhedron, and put
a “charge” of +2π on each vertex, +2π on each face, and −2π on each edge. By Euler’s formula,
the total charge on the graph is 2πn− 2πm+ 2πf = 4π.

Just like positive and negative electric charges cancel, we will move around these charges to cancel
them, while not changing the overall sum. First, from each face, we move +π charge on to each of
its edges. This leaves each edge at charge 0; it started at −2π, but gained +π from each of the two
faces it borders. However, each face has now gone into the negatives: a face of length ℓ now has
charge −(ℓ− 2)π.

Recall from high school geometry that (ℓ− 2)π is the sum of the angles of an ℓ-sided polygon.2 So
we can bring each face up to neutral with the following second transformation: for every corner of
every face, if that corner makes an angle of θ on that face in the polyhedron, we move θ charge
from the vertex at that corner to the face.

When we’re done, the faces and edges all have charge 0, while the remaining charge at each vertex is
exactly the angle defect. However, the sum of the charges has remained at 4π throughout, proving
the formula.

Theorem 3.1 can quickly count the vertices in any Archimedean solid. For example, in the truncated
tetrahedron, a regular triangle (with angle measure π/3) and two regular hexagons (with angle
measure 2π/3) meet at each vertex, so the angle defect at each vertex is 2π−π/3−2(2π/3) = π/3.
The total angle defect is 4π, so there must be 4π

π/3 = 12 vertices.

2To help you recall it, here is the sketch of an argument for this formula: we can always draw in some diagonals
to separate an ℓ-sided polygon into ℓ− 2 triangles, each with a sum of angles of π.
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4 Practice problems

1. Draw a plane embedding of the skeleton graph of the dodecahedron.

2. The skeleton graph of the icosahedron is pancyclic: it has a cycle of every length from 3 to 12.
Verify this by finding each of those cycles.

3. Determine what the dual graph of any embedding of any n-vertex tree looks like. (Conclude
that two planar graphs with isomorphic duals are not, themselves, necessarily isomorphic.)

4. Here are five different plane embeddings of a graph G, from two lectures ago:

For each plane embedding, draw the dual graph. Determine which of these graphs are iso-
morphic to each other, and which are not.

Can you think of a way in which the plane embeddings with isomorphic dual graphs are
somehow “the same”, even though they do not look the same?

5. A uniform n-gonal prism is a prism whose top and bottom are regular n-gons, and whose
sides are n squares.

(a) Draw a plane embedding of the skeleton graph of a uniform n-gonal prism where n is
some very big number—like 6. Explain how to draw such a plane embedding for any
value of n.

(b) Draw the dual graph of the plane embedding you drew in the first part. Describe the
structure of this dual graph for arbitrary values of n.

(c) Geometrically, what does the dual polyhedron of the n-gonal prism look like?

6. Here are few more questions about Archimedean solids.

(a) An icosidodecahedron is an Archimedean solid with 12 pentagonal faces (like a do-
decahedron) and 20 triangular faces (like an icosahedron). How many vertices and edges
does it have? How many faces of each type meet at each vertex?

(b) A snub cube is an Archimedean solid with four triangles and one square meeting at
every vertex. How many vertices and edges does it have, and how many faces of each
type?

(c) What about the truncated icosidodecahedron, in which a 4-sided face, a 6-sided
face, and a 10-sided face meet at every vertex?

(d) The prisms mentioned in the previous question fall under the definition of an Archimedean
solid, but are often excluded because there’s infinitely many of them.

There is another infinite family: the uniform n-gonal antiprisms.
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These have two faces that are regular n-gons, and all other faces are triangles. At each
vertex, one of the n-gons and k of the triangles meet. What is the value of k? How
many triangular faces are there in total?

7. Suppose that G is an n-vertex planar multigraph such that (for at least one plane embedding
of G) the dual graph G∗ is isomorphic to G. (We call such a multigraph self-dual.)

(a) How many edges must G have, in terms of n?

(b) Find an example of such a graph G for all n ≥ 2.

8. (a) It follows from Theorem 1.1 that any Platonic solid with (p, q) = (3, 3) is a 3-regular 4-
vertex graph. Prove that there is only one such graph (up to isomorphism), and conclude
that the tetrahedral graph is unique.

(b) It follows from Theorem 1.1 that any Platonic solid with (p, q) = (3, 4) is a 4-regular 6-
vertex graph. Prove that there is only one such graph (up to isomorphism), and conclude
that the tetrahedral graph is unique.

9. For the cube graph, we need to know a bit more.

(a) Suppose that G is a planar graph with a plane embedding in which every face has even
length. Prove that G is bipartite.

(Hint: for any arbitrary cycle C, get a new plane embedding of some subgraph H by
finding C inside the plane embedding of G, and erasing everything outside that cycle.
What can you say about the lengths of the faces in this embedding, and why does this
prove that C has even length?)

(b) It follows from Theorem 1.1 that any Platonic solid with (p, q) = (4, 3) is a 3-regular
8-vertex graph; from part (a), it follows that the graph is bipartite. Prove that there is
only one such graph (up to isomorphism), and conclude that the cube graph is unique.
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