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1 Defining cliques and independent sets

1.1 Definitions

Cliques and independent sets are closely related objects in graphs.

A clique in a graph G is a subgraph isomorphic to Kk for some k. Equivalently, if we think about it
as a set of vertices, it is a subset S ⊆ V (G) such that any two vertices u, v ∈ S are adjacent.

For any vertex v, {v} is a one-vertex clique. For any edge uv, {u, v} is a two-vertex clique. However,
with more vertices, the number of constraints grows rapidly: large cliques are rare in most graphs,
and hard to find. For this reason, there is an associated maximization problem: if I give you a
graph G, what is the largest clique you can find in it? The number of vertices in a largest clique in
G is denoted ω(G): the clique number of G.

An independent set in a graph G is a subset S ⊆ V (G) such that there is no pair of adjacent
vertices u, v ∈ S. Once again, there is an associated maximization problem: if I give you a graph
G, what is th largest independent set you can find in it? The number of vertices in a largest
independent set in G is denoted α(G): the independence number of G.

These definitions are very similar: the only change is whether we want vertices to be adjacent
or non-adjacent. As a result, cliques in a graph G correspond exactly to independent sets in the
complement graph G (where adjacent vertices become non-adjacent, and non-adjacent vertices be-
comea adjacent). Similarly, independent sets in G correspond exactly to cliques in G. In particular,
α(G) = ω(G) and ω(G) = α(G).

There are also two connections to parameters we have previously studied.

• A subset S ⊆ V (G) is an independent set if and only if its complement V (G)− S is a vertex
cover. For S to be an independent set, no edge can have both endpoints in S. For V (G)− S
to be a vertex cover, each edge must have at least on endpoint in V (G) − S. These say the
same thing.

(This statement sounds superficially similar to the relationship between independent sets and
cliques, since both have the word “complement”. Don’t be confused by this; in one, we are
taking the complement of the graph, and in the other, we are taking the complement of the
set. Think through the definitions when you use these properties!)

Recall that β(G) denotes the number of vertices in the smallest vertex cover. When S is as
large as possible, V (G)− S is as small as possible; therefore α(G) + β(G) is always equal to
|V (G)|.

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/

3322-fall-2024

1

http://misha.fish/archive/3322-fall-2024
http://misha.fish/archive/3322-fall-2024


• Conceptually, independent sets and matchings are related. Independent sets are sets of ver-
tices that share no edges; matchings are sets of edges that share no vertices.

There is no direct relationship between independent sets and matchings in a graph (except
through vertex covers). However, the similarity in definitions is the reason why the notation
is similar. We write α(G) for the size of a largest independent set, and α′(G) for the size of
a largest matching.

1.2 Examples

In principle, we don’t need three parameters α(G), β(G), ω(G). We could express all three of them
in terms of just one: α(G), |V (G)| − α(G), α(G). However, in applications, sometimes one of them
is easier to think about than the other.

In the first lecture, we saw an application of independent sets to tiling problems. Here are a few
others.

Scheduling and interval graphs. Suppose we are trying to schedule events. This is an easy task
if none of the events overlap, but of course they might. Let’s say that the ith event starts at time ai
and ends at time bi; two events conflicts conflict if the intervals [ai, bi] and [aj , bj ] intersect.

We can draw a graph G representing the conflicts: it has a vertex for every event, and an edge for
every two events with a conflict between them. Such a graph is often called an interval graph.
Both cliques and independent sets are of interest to us with interval graphs:

• A clique in G is a set of events among which any two are in conflict. This happens if there is
at least one moment time at which all the events in the clique are happening simultaneously.

• An independent set in G is a set of events among which none conflict. If you are looking for a
set of events that can all be scheduled in the same location, or a set of events that one person
can attend, you are looking for an independent set.

Friend groups. Cliques are common to encounter when we are looking at a graph representing
people that know each other—for example, the graph of Facebook, where vertices are Facebook
accounts, and edges are friendships. The graph-theoretic use of the word “clique” comes from the
usual sense of “clique” as it occurs in this application: a clique in the Facebook graph is a set of
people that are all friends on Facebook.

It is not surprising to see large cliques in this graph; just think of how many times you see “XX
mutual friends” on Facebook! Often, these cliques correspond to a club or event in real life, so
advertisers might be interested in finding them. . . but let’s not talk about such dark arts.

For graph theorists, Facebook cliques are interesting for a different reason: modeling. How would
you create a graph that simulates the Facebook graph? The easiest way is to choose edges at
random: maybe you have a million vertices, and each vertex is joined to a random set of (say) 100
other vertices. However, cliques tell us that this is a bad model: the real Facebook graph has a much
higher clique number than such a random graph. More sophisticated models are necessary.

(The resulting graphs could be used, for example, to study the speed of disease propagation,
assuming that an illness is more likely to spread from a vertex to adjacent vertices (friends) than
to completely unrelated vertices.)
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2 An overview of Ramsey’s theorem

2.1 Motivation

One of the reasons to study both clique number and independence number is to look at how they
are related in the same graph. Intuitively, if a graph G has a low clique number ω(G), then it
doesn’t have too many edges—and its independence number α(G) is high. Conversely, if α(G) is
low, then G must have a lot of edges to prevent large independent sets from occurring—and this
results in a higher value of ω(G).

How do we quantify this? The answer is Ramsey’s theorem. Before stating this theorem in full,
let’s look at a traditional simple case. This case is often stated informally as “if you have a party
with 6 guests, either you can find 3 guests that all know each other, or you can find 3 guests that
are all meeting for the first time”. More abstractly:

Theorem 2.1. If a graph G has at least 6 vertices, then either α(G) ≥ 3 or ω(G) ≥ 3.

Proof. Let v be an arbitrary vertex of G. We consider two cases:

Case 1: deg(v) ≥ 3. Then we can choose three vertices w1, w2, w3 all adjacent to v. Even a
single edge w1w2, w1w3, or w2w3 between these creates a 3-vertex clique: {v, w1, w2}, {v, w1, w3},
or {v, w2, w3} respectively. However, if none of these edges exist, then {w1, w2, w3} is a 3-vertex
independent set.

Case 2: deg(v) ≤ 2. In this case, since G has at least 5 vertices other than v, and at most two of
them are adjacent to v, we can do the opposite: choose three vertices u1, u2, u3 none of which are
adjacent to v. From here, Case 2 is handled similarly to Case 1. If all three edges u1u2, u1u3, and
u2u3 are present, then {u1, u2, u3} is a clique. So suppose one of these edges, uiuj for some i ̸= j,
is absent. Then {v, ui, uj} is an independent set.

In both cases, we find either a clique or an independent set with 3 vertices, so either α(G) ≥ 3 or
ω(G) ≥ 3.

The number 6 is the best possible in this theorem, since C5 is a 5-vertex graph with α(C5) =
ω(C5) = 2.

Ramsey’s theorem says, more generally, that the same thing happens for k-vertex cliques or inde-
pendent sets. For every k, there is a number R(k) (called the kth Ramsey number) such that
every graph G with R(k) or more vertices has either α(G) ≥ k or ω(G) ≥ k.

Finding these Ramsey numbers is an open area of study. Today, we will see some upper and lower
bounds on R(k).

Ramsey theory is an area of study in math that starts here but goes beyond graph theory. It is
all about finding some kind of small ordered structure in a large, chaotic world. (In Ramsey’s
theorem, our “world” is an arbitrary large graph, and our ordered structure is either a clique or an
independent set.)
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2.2 Upper bounds

Theorem 2.2. For all k, a graph G on 22k or more vertices has either α(G) ≥ k or ω(G) ≥ k. In
particular, Ramsey’s theorem holds, and R(k) ≤ 22k.

Proof. We are trying to prove that G has either a clique or an independent set—so we want to
give an algorithm that will do it. But we can’t guarantee specifically a clique or specifically an
independent set, so what should we be looking for?

The answer is that we will begin by finding a sequence of vertices v1, v2, . . . , v2k such that every
vertex vi is either adjacent to all of the vertices vi+1, . . . , v2k, or to none of them. Call this an
“all-or-nothing” sequence. This is a sort of mix between a clique (which chooses the “all” option
for every vertex) and an independent set (which chooses the “none” option for every vertex).

We’ll build up the all-or-nothing sequence one vertex at a time. We’ll also maintain a pool S
of “suitable vertices” that can be used to continue the sequence. Initially, the sequence has no
elements, and S is all of V (G).

We begin by choosing v1 to be any element of S: that is, any vertex. (Remove v1 from S as we do
so.) Then, we reduce the pool of available vertices further. If deg(v1) < 22k−1, we throw away all
vertices adjacent to v1, ensuring that v1 is adjacent to all the vertices left in S. If deg(v1) ≥ 22k−1,
instead we throw away all vertices not adjacent to v1, ensuring that v1 is adjacent to none of the
vertices left in S. We make the choice this way to ensure that |S| ≥ 22k−1 after this step is done.

We continue in the same way. Suppose that we’ve already chosen v1, v2, . . . , vi−1. Then we choose
vi to be any of the suitable vertices in S, and remove vi from S. To continue, we pare down S
to either the subset which is adjacent to vi, or the subset not adjacent to vi, whichever is larger.
When we make the choice in this way, |S| decreases at most by a factor of 2.

The set S keeps shrinking, and after |S| = 0, of course we can’t choose any more vertices. But
because |S| is at worst cut in half after every step, we still have |S| ≥ 22k−i when i vertices have
been chosen. In particular, |S| will stay positive long enough to choose an all-or-nothing sequence
of length 2k.

Once we have this sequence what do we do? Well, with 2k vertices to choose from, either k of them
choose the “all” option (and are adjacent to all following vertices) or k of them choose the “none”
option (and are adjacent to none of the following vertices). In the first case, we see a k-vertex
clique; in the second case, we see a k-vertex independent set.

This proof is not written in a careful way that tries to get the best bound; in particular, it says
R(3) ≤ 26 = 64, and we already know that R(3) = 6. We can improve the bound in some ways
(see the practice problems).

However, even our best upper bounds on R(k) do not grow significantly slower than 22k. In 2023,
a breakthrough was made: the upper bound was improved to roughly R(k) ≤ 3.999k. Even this
much is a big deal!
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2.3 Lower bounds

So is R(k) as big as that? The answer is both yes and no (and also maybe).

If you look for lower bounds on R(k), you will probably not find very good ones. It turns out to
be very difficult to construct graphs by hand that have a small clique number as well as a small
independence number.

However, such graphs do exist. And even though they’re hard for us to find, they’re not rare: we
can find one just by picking it at random.

Theorem 2.3. For k ≥ 3, let G be a graph with n = 2k/2−1 vertices; flip a coin for every possible
edge to see if it’s present or absent. Then there is a positive probability that α(G) < k and ω(G) < k.

(Note: when k is odd, 2k/2−1 is not an integer, but we can round down; this does not hurt the
proof.)

Proof. For any given set of k vertices, what is the probability that they form a clique? Well, there
are

(
k
2

)
= k(k−1)

2 edges between them. All of the coinflips for those edges have to go one way, for a

probability of (12)
k(k−1)/2.

That’s not the whole story, though, because there are many k-vertex sets that could form a clique.
As an upper bound, there are at most nk = 2k(k/2−1). This is an overcount—nk counts an ordered
sample with replacement, and here we don’t need the order and don’t want to take vertices with
replacement. But for the upper bound, an overcount is fine.

If you have N events and each happens with probability p, then the probability that any of them
happen is at most Np: this worst case is achieved when the events are disjoint. If they are not
disjoint, we have to subtract the overlaps, so Np is only an upper bound; again, that’s fine here.
We have at most 2k(k/2−1) events and each happens with probability (12)

k(k−1)/2, so the probability

that any of them happen is at most 2k(k/2−1) · 2−k(k−1)/2 = 2−k/2.

This is our upper bound for the probability that G has a k-vertex clique. We get a similar upper
bound for the probability that G has a k-vertex independent set. So the overall probability that
α(G) ≥ k or ω(G) ≥ k is at most 2−k/2 +2−k/2 = 21−k/2. This probability gets very very small for

large k, but even for k = 3 it is 2−1/2 =
√
2
2 ≈ 0.707. That’s less than 1.

What we see here is a use of the probabilistic method: rather than find an example explicitly, we
show that if we pick a random example, it has a positive (and often quite high) chance of working.
In particular, graphs like this must exist: if they did not exist, the probability would be 0. We
conclude that R(k) > 2k/2−1.
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3 Practice problems

1. Consider the graph with ab vertices corresponding to pairs (x, y) where 1 ≤ x ≤ a and
1 ≤ y ≤ b, and where two vertices (x, y) and (x′, y′) are adjacent whenever x ̸= x′. (This is a
complete a-partite graph where each part has size b.)

(a) What is the clique number of this graph? Describe what the largest cliques look like.

(b) What is the independence number of this graph? Describe what the largest independent
sets look like.

2. If we really really just want independent sets and not cliques, we can modify the algorithm
in the proof of Theorem 2.2 to always replace S by the subset of S not adjacent to vi. Of
course, now it’s possible for |S| to decrease much faster in some graphs.

Prove that in a 100-vertex graph with maximum degree 10, the algorithm finds an independent
set of size 10. How well does it do in general, in an n-vertex graph G with maximum
degree ∆(G)?

3. The graph below is defined by a simple rule: the 17 vertices are spaced equally around a
circle, and there is an edge between two vertices when they are 1, 2, 4, or 8 steps away.

(a) What is the independence number of this graph?

(b) What is the clique number of this graph?

(c) This graph is famous for being an example that proves a lower bound for a Ramsey
number R(k). What lower bound does it prove, for which value of k?

4. By being more careful in the proof of Theorem 2.2, we can improve the upper bound it gives.
See if you can get the proof to give 22k−2 as an upper bound instead.

5. The reason Theorem 2.3 uses a randomly chosen graph is that non-random graphs that do
equally well are hard to describe. This problem has one possible construction that doesn’t
do nearly as well as the random graph, but does better than many other possibilities.

Let G1 be the 5-cycle C5. Then, for each k > 1, construct Gk by starting with Gk−1, and
then replacing

• Each vertex v of Gk−1 by five vertices v1, v2, v3, v4, v5 with a 5-cycle through them;

• Each edge vw of Gk−1 by 25 edges viwj for 1 ≤ i, j ≤ 5.

In other words, we replace the vertices of Gk−1 by copies of C5.

(a) Prove that α(G2) = ω(G2) = 4. What do the cliques and independent sets look like?
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(b) Prove that α(Gk) = ω(Gk) = 2k. (Induct on k.)

(c) We get a lower bound R(17) > n by finding an n-vertex graph G with α(G) ≤ 16 and
ω(G) ≤ 16.

What lower bound does the construction in this problem give for R(17)? How does it
compare to the lower bound from Theorem 2.3?

What if we try to bound R(33) instead?
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