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Lecture 25: Bounds on chromatic number
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1 Lower bounds on chromatic number

Let’s summarize what we know about the chromatic number χ(G) of a graph G so far:

• For any graph G, χ(G) ≤ ∆(G) + 1, where ∆(G) is the maximum degree.

• If G is a planar graph, then χ(G) ≤ 4. (We only proved that χ(G) ≤ 6; proving that χ(G) ≤ 4
is the much harder Four Color Theorem.)

• If G is an interval graph, then χ(G) ≤ ω(G), where ω(G) is the clique number.

• If you’ve looked at the practice problems, you also know that if G has m edges, then χ(G) ≤
1 +

√
2m.

These all have one thing in common: they are upper bounds on χ(G). That’s all we’re going to
get from looking at variants of the greedy algorithm the way that we’ve been doing. Arguments
like that are telling us that there is a way to color G using some number of colors, and here’s
how.

So how do we prove lower bounds on χ(G)? This requires some kind of different argument: we
need to show that colorings with a certain number of colors are impossible.

We will begin with two important lower bounds using quantities we’ve looked at before.

1.1 Lower bound via clique number

What’s the most straightforward graph that requires k colors? It is the complete graph Kk: its k
vertices are all adjacent, so all of them need different colors.

Moreover, if a large graph G contains a copy of Kk inside it, then we know that χ(G) ≥ k as well.
Even the copy of Kk inside G needs k colors: coloring the other vertices can only make things
worse. (In general, if H is a subgraph of G, then χ(G) ≥ χ(H), because to color G, we must first
color H.)

We have a word for a copy of Kk inside G: we called it a clique of size k. The size of the largest
clique in G is the clique number ω(G). We conclude:

Theorem 1.1. For any graph G, we have χ(G) ≥ ω(G).

This lower bound is the easiest of all lower bounds to see. In fact, it takes some work to convince
yourself that χ(G) is not always the same as ω(G).

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/
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Long odd cycles are the simplest example showing that χ(G) and ω(G) can be different. Any odd
cycle like C5 or C7 or C101 has chromatic number at least 3, because it is not bipartite. (In fact,
because the maximum degree is 2, the chromatic number can’t be more than 3, so it is exactly 3.)
However, with the exception of C3, odd cycles only have clique number 2.

We will see more elaborate examples soon.

1.2 Lower bound via independence number

The independence number α(G) is the exact opposite of the clique number ω(G): it is the size
of the largest set of vertices with no edges between them. So it may seem surprising that the
independence number can also help us put lower bounds on the chromatic number.

The color classes of a coloring are the sets of vertices of each color. For example, if we color the
vertices of a graph red, blue, and orange, the set of red vertices is a color class; the set of blue vertices
is a color class; the set of orange vertices is a color class. Here is an example illustration:
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In a proper coloring, two vertices of the same color can’t be adjacent, and therefore the color classes
are independent sets. In fact, that’s a characterization of proper colorings: they are partitions of
the vertices of G into independent sets. (Many important applications of graph coloring come from
thinking of colorings in this way.)

This gives us another lower bound on chromatic number:

Theorem 1.2. If G is an n-vertex graph with independence number α(G), then χ(G) ≥ n
α(G) .

Proof. The independence number α(G) is the largest number of vertices in any independent set,
so in particular every color class in a proper k-coloring has at most α(G) vertices. But the union
of all k colors must give us all n vertices, so k · α(G) must be at least n. Rearranging, we get
k ≥ n

α(G) .

1.3 How good are these bounds?

It is very easy to come up with examples of graphs that “fool” the lower bound χ(G) ≥ n
α(G) :

graphs that have very large chromatic number, even though α(G) is small. For example, consider
the 7-sunlet graph, shown below:
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The 7-sunlet graph consists of a 7-vertex clique on the inside, with a “ray” from each vertex of the
clique to its own vertex of degree 1. Due to the 7-clique, this graph needs at least 7 vertices to
color; in fact, once we color the central clique with 7 colors, it isn’t hard to color the rest of the
graph without using any other colors. So the chromatic number is 7.

On the other hand, there are 14 vertices and a 7-vertex independent set: take all the outer vertices.
So the bound of Theorem 1.2 only tells us that the chromatic number is at least 2: not very
helpful!

We can make this example arbitrarily bad by generalizing from the 7-sunlet graph to the n-sunlet
graph, built around a clique of size n.

It is much harder to find examples where χ(G) and ω(G) are far apart. We will see two situations
where this happens.

2 The Mycielski construction

The Mycielski construction is an iterative construction for building graphs where χ(G) is high,
but ω(G) is low. In fact, the graphs we construct in this section will have ω(G) = 2. A clique of
size 3 is also called a triangle, because that’s what it looks like: 3 vertices with all 3 edges between
them. So a graph with ω(G) = 2 is often called triangle-free.

To find these graphs, we first define a new operation on graphs. Given a graph G, the Mycielskian
of G is a graph M(G) constructed as follows.

1. Start with a copy of G, with vertices named v1, v2, . . . , vn.

2. For each vertex vi, add a “shadow vertex” ui adjacent to all of vi’s neighbors in the copy of
G.

(We never add edges between two different shadow vertices.)

3. Finally, add a vertex w adjacent to all the shadow vertices u1, u2, . . . , un.

Here is an example of this construction in action, with an arbitrary starting graph G. (This is not
the graph G we’ll ultimately want to apply the construction to.)

The original graph G:

The shadow vertices:

The final vertex w:

Claim 2.1. If G is triangle-free, then so is M(G).

Proof. Where could we try to find a triangle in M(G), when there are no triangles in G?

If one vertex of the triangle were the final vertex w, then the other two vertices would both have
to be shadow vertices ui, uj . This does not work, because ui and uj are not adjacent to each other.
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Similarly, we cannot have a triangle with more than one shadow vertex in it. So the only hope for
creating a triangle is to take one shadow vertex ui, and two original vertices vj , vk. (You can see
some triangles like this in the diagram above.)

But if all three of these vertices are adjacent, then vi is also adjacent to vj and vk, so vi, vj , vk
form a triangle as well! Therefore this cannot happen if G is triangle-free: M(G) must also be
triangle-free.

Claim 2.2. χ(M(G)) = χ(G) + 1: the Mycielskian operation increases chromatic number by 1.

Proof. One direction of this claim (which we don’t particularly need in the end, but which we’ll
do anyway because it’s easy) is to show that χ(M(G)) ≤ χ(G) + 1: if we can color G with χ(G)
colors, we can color M(G) with χ(G) + 1 colors.

To do this, just take a proper k-coloring of G and apply it to the copy of G inside M(G). Then,
give every shadow vertex ui the same color as the color of vi: this works fine, because it has all the
same neighbors as vi. Finally, give w a new color we did not use in G. This also cannot create any
conflicts, so we get a proper (k + 1)-coloring of M(G).

The other direction is harder: given a proper k-coloring of M(G), we must construct a proper
(k − 1)-coloring of G. The algorithm to do so is this: given a proper k-coloring of M(G), if any
vertex vi has the same color as w, change it to have the same color as ui (which must be different
from w’s color, because ui is adjacent to w). Here is an example:
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You’ll notice that when we do this, the new coloring is no longer proper: the new color of vi might
conflict with some of its shadow vertex neighbors. However:

If vi is adjacent to vj and we recolor vi, then vi and vj are different colors.

That’s because ui was also adjacent to vj in the proper coloring we started with, so the color of ui
(which is the new color of vi) is different from the color of vj . Also, none of the vertices we recolored
were adjacent (because they were all the same color as w), so we don’t get any conflicts between
two vertices that change colors.

Another way to say the bolded statement is that if we take the new coloring of M(G) and only look
at the copy of G inside it, we get a proper coloring of G. That proper coloring uses one fewer color,
because the color of w no longer appears on any of v1, v2, . . . , vn. This gives us the (k− 1)-coloring
of G we wanted.

As a consequence, if we start with an arbitrary triangle-free graph, and apply the Mycielski con-
struction over and over and over, we get a sequence of triangle-free graphs with growing chromatic
number. This demonstrates that χ(G) might be much larger than ω(G).
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Traditionally, we start with K2: two vertices with an edge. Then M(K2) = C5: the 5-cycle. M(C5)
is the Grötzsch graph, shown below:

The Grötzsch graph is the smallest triangle-free graph with chromatic number 4.

Collectively, the sequence of graphs K2,M(K2),M(M(K2)),M(M(M(K2))), . . . are sometimes
called the Mycielski graphs.

3 Coloring random graphs

When we were looking at Ramsey numbers a few lectures ago, we saw that a randomly chosen
graph is a good candidate for a graph G where both α(G) and ω(G) are low.

Let’s return to this, but make it a bit more concrete. And to get a large-scale view of the problem,
let’s consider graphs with n = 1000000 (a million) vertices.

There are many such graphs. To pick one of them at random, we flip a coin for each pair of vertices
to decide if there is an edge between them. There is a mindbogglingly large number of graphs
like this; every time you go to the trouble of flipping all

(
1000000

2

)
coins to get a random 1000000-

vertex graph, it is overwhelmingly likely that you are looking at a graph no human has ever seen
before. But in some ways, these graphs are very predictable. They all have about 1

2

(
1000000

2

)
edges,

give or take a few million. And all of them have fairly small clique number and independence
number.

Claim 3.1. If G is a random graph chosen in this way, it is very unlikely that ω(G) ≥ 40.

Proof. There are
(
1000000

40

)
≈ 1.22× 10192 ways to choose 40 of the vertices of G. Each one of those

40-vertex sets could be a 40-vertex clique, if we’re lucky.

It could be a 40-vertex clique, but that’s very unlikely. There are
(
40
2

)
= 780 edges between those 40

vertices, so we flip 780 coins to decide which edges between the vertices are present. In order for us
to get a clique, all the coinflips have to go one way, which has a probability of 2−780 ≈ 1.57×10−235.

As an upper bound on the probability of getting a 40-vertex clique, it’s enough to just multiply
these two numbers together. If there are about 1.22 × 10192 potential 40-vertex cliques, and each
one of them has about a 1.57× 10−235 chance of actually being a clique, then even if those are all
disjoint events, the total probability of a 40-vertex clique is only (1.22× 10192) · (1.57× 10−235) or
about 1.93× 10−43.

That’s a tiny probability: we’re looking at an event that almost never happens. Our randomly
chosen graph on 1000000 vertices almost never has any 40-vertex cliques.

Similarly:

5



Claim 3.2. If G is a random graph chosen in this way, it is very unlikely that α(G) ≥ 40.

Proof. The probability here is exactly the same as for cliques. For any given 40-vertex set, if we
are flipping coins for each of the 780 edges, there is (again) a 2−780 probability that none of the
edges are present.

So once again, there is at most a 1.93×10−43 probability of getting a 40-vertex independent set.

Let G be a 1000000-vertex graph with α(G) ≤ 40 and ω(G) ≤ 40. What do we know about its
chromatic number?

• Theorem 1.1, our bound via clique number, says that χ(G) ≥ 40.

• However, Theorem 1.2, our bound via independence number, says that χ(G) ≥ 1000000
40 =

25000. That’s much bigger!

In some sense, this result tells us that for almost all large graphs, Theorem 1.2 gives a much more
useful bound than Theorem 1.1. Even though clique numbers often seem useful in small examples,
those small examples are misleading: large graphs are very different.

This is not to say that Theorem 1.1 is useless. Not every graph we encounter is a randomly-
generated graph. And we’ve already seen that for interval graphs, for example, the clique number
always tells us the exact truth about the chromatic number.

In summary, both bounds are useful—and neither should be assumed to be correct without doing
more investigation.

6



4 Practice problems

1. Let G be the 25-vertex graph shown below:

(a) What is the clique number ω(G)? What lower bound on χ(G) does it give?

(b) What is the independence number α(G)? What lower bound on χ(G) does it give?

(c) What is the maximum degree ∆(G)? What upper bound on χ(G) does it give?

(d) What is the actual chromatic number of G?

2. A wheel graph Wk is the graph obtained from the cycle graph Cn by adding a vertex
adjacent to all vertice of the cycle.

(a) Draw a diagram of W5.

(b) Show that ω(W5) = 3 but χ(W5) = 4.

(c) Generalize this construction to find a graph G in which ω(G) = k but χ(G) = k+1, for
every k ≥ 3.

3. (a) Draw the graph M(K3).

(b) What are all the triangles in this graph?

Does M(K3) have any cliques with 4 or more vertices?

4. Prove the four-color theorem for planar graphs G with ω(G) = 2: triangle-free planar graphs.

(Note: Grötzsch’s theorem—this is the same Grötzsch as the namesake of the Grötzsch
graph—proves that in fact all triangle-free planar graphs are 3-colorable.)

5. The Mycielski graphs have another interesting property. They are edge-critical: if you
delete any edge, the chromatic number decreases.

Equivalently, a graph G with χ(G) = k is edge-critical if, for every edge e, there is a (k − 1)-
coloring of G in which both endpoints of e have the same color, but which is otherwise proper.

(a) Show that C5 is edge-critical.

(b) Show that if G is edge-critical, then M(G) is edge-critical. By induction, conclude that
all Mycielski graphs are edge-critical.
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6. It is interesting to think about coloring the co-bipartite graphs: graphs whose complement
is bipartite. A graph G is a co-bipartite graph if and only if we can partition V (G) into two
sets A and B such that the subgraphs induced by A and by B are both complete graphs (and,
additionally, there may be some edges between A and B).

(a) Show that in any proper coloring of a co-bipartite graph, each color class contains at
most 2 vertices.

(b) Suppose that a co-bipartite graph G has a proper coloring where k color classes have 2
vertices.

What are those k color classes doing in the complement graph G (a bipartite graph)?
Relate this to a problem we’ve already studied this semester.

(c) What is the connection between a clique in a co-bipartite graph G and a vertex cover in
the bipartite graph G?

(d) Put these things together to prove that if G is a co-bipartite graph, then χ(G) = ω(G).

7. The following inequality is true whenever n1, n2, . . . , nk are positive integers with n1 + n2 +
· · ·+ nk = n:

k∑
i=1

(
ni

2

)
≥ k

(
n/k

2

)
=

n(n− k)

2k
.

Use this to find the maximum number of edges in an n-vertex graph with chromatic number k.

(Note: it turns out that the lower bound on chromatic number we get in this way can never
be more powerful than the lower bound on chromatic number via clique number. But proving
this is harder.)
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