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1 Cut vertices

Near the beginning of the semester, we discussed connected components of graphs. For many
graph-theoretical problems we’ve solved since then, these components don’t interact at all: we can
solve the problem for a graph with many connected components by solving it on each component
separately.

One step up from this, but very similar in flavor, are graphs with cut vertices. Formally:

• If G is a connected graph, a vertex v ∈ V (G) is a cut vertex if G− v is not connected.

• Very occasionally, we might want to talk about cut vertices when G is not connected. In that
case, it makes sense to say that v is a cut vertex if G − v has more connected components
than G.

Let’s see how this helps us break a problem down into simpler problems. In all of these, let’s say
that H1, H2, . . . ,Hk are the connected components of G − v, but with v added back in. Here’s a
picture to help make this make more sense:

H1

H2

H3

H4

All the graphs H1, H2, . . . ,Hk contain v, and they overlap only at v.

How does this help us break down a problem? Here are some examples.

• If our goal is to determine whether G is planar, it’s enough to know whether H1, H2, . . . ,Hk

are all planar. If they are, then they each have an embedding where v is one of the vertices
on the unbounded face. Then we can join the embeddings together at v like the petals of a
flower (or like the graphs in the diagram above).

• If we want to find a proper coloring of G, it’s enough to color H1, H2, . . . ,Hk. Relabel the
colors in their colorings so that v has the same color in each of them. Then, we can use those
colorings to color all of G.

In particular, χ(G) = max{χ(H1), χ(H2), . . . , χ(Hk)}.
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• If we want to find the largest clique in G, it’s enough to find the largest clique in each of
H1, H2, . . . ,Hk: a clique in G must be entirely contained in one of these.

Just as with chromatic number, we have ω(G) = max{ω(H1), ω(H2), . . . , ω(Hk)}.

• Every spanning tree of G can be obtained by putting together a spanning tree of each of
H1, H2, . . . ,Hk. This can be useful for finding a minimum-cost spanning tree, or by counting
the number of possible spanning trees.

There are other problems in graph theory that become easier when we located a cut vertex; some
we have talked about, and many we have not!

2 2-connected graphs

A graph G on at least 3 vertices is 2-connected if G is connected and has no cut vertices: for all
v ∈ V (G), the graph G− v is also connected.

(Why “at least 3 vertices”? This is added because the graph K2 (with only 2 vertices) also has
no cut vertices; we don’t consider it 2-connected, since it lacks many of the properties of other
2-connected graphs.)

Knowing that a graph does have a cut vertex gives us a way to break it down into simpler pieces.
But we might also want to understand 2-connected graphs, for two reasons:

• In practical problems, because they represent networks with some amount of resilience. For
example, a 2-connected computer network is one that continues to be connected if something
happens to one of the computers. A 2-connected airline network is one that continues to be
connected if something happens to one of the airports.

• In theoretical problems, it lets us make extra use of cut vertices. If cut vertices let us simplify
a particular problem, then it’s enough to solve the problem for 2-connected graphs. Is this
easier? That depends on how many properties of 2-connected graphs we know!

There are many properties of 2-connected graphs, but today we will see a fundamental one:

Theorem 2.1. G is 2-connected if and only if any two vertices of G lie on a common cycle.

The easy direction of this theorem is to show that if G has this property, it is 2-connected.

Suppose any two vertices of G lie on a common cycle, and we delete vertex v. Let u,w be any
other vertices of G. Then since u and w lie on a common cycle in G, one of two things can happen
in G− v:

• The cycle survives intact.

• The cycle contained v, and falls apart into a path containing u and w.

In either case, the cycle or whatever is left of it contains a u − w path, so in particular there is
a u−w path in G− v. Since u and w were arbitrary, G− v is connected; since v was arbitrary, G
is 2-connected.

We will not prove the hard direction of Theorem 2.1 yet. Instead, we will pivot in a different
direction, and return to the proof of this theorem at the end of the lecture.
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3 Ear decompositions

Theorem 2.1 is a useful characterization of 2-connected graphs, but it’s hard to use it to check if a
graph is 2-connected. We’d have to find lots of cycles to demonstrate that there’s one through any
two vertices. That’s not much easier than checking that G−v is connected for every vertex v.

We would like to have a “short certificate” that a 2-connected graph really is 2-connected. One
way to do this is through ear decompositions.

An ear of a graph G is a path2 in G in which every vertex except the first and the last (every
internal vertex) has degree 2. When we add an ear to a graph G, we pick two vertices v, w of G
and create an ear by adding entirely new edges and (if the ear has length 2 or more) entirely new
internal vertices to form a v − w path. This is actually easier to show than to explain. Here is a
cube graph, and a cube graph with an ear added:

In particular, adding an edge to G (and no new vertices) is adding an ear of length 1.

Lemma 3.1. If G is a 2-connected graph and we add an ear to G, the resulting graph is also
2-connected.

Proof. Let H be a graph obtained from G by adding a v − w ear whose internal vertices are
x1, x2, . . . , xk. (It’s possible that k = 0.) We will check that the new graph H still does not have a
cut vertex. To do this, we see what happens when we delete a vertex of H:

• Suppose we delete a vertex u ∈ V (G) other than v or w. Because G − u is connected, all
vertices of G−u are in the same connected component of H −u. Also, x1, x2, . . . , xk all have
a path to v and to w, so they are also in that same connected component: H−u is connected.

• If we delete v or w, essentially the same thing happens. The only change is that for
x1, x2, . . . , xk, we should observe that we still have a path to whichever of v or w we didn’t
delete.

• If we delete one of the new vertices xi, then G remains connected (we didn’t touch it); vertices
x1, . . . , xi−1 still have a path to v; vertices xi+1, . . . , xk still have a path to w. As a result,
H − xi is still connected.

In all cases, H has no cut vertices, so H is 2-connected.

We can use Lemma 3.1 to prove that a graph is 2-connected. Suppose we start from a cycle graph:
that’s 2-connected, because deleting any vertex leaves a path. Then, we add an ear to this cycle
graph (getting another 2-connected graph). Then, we repeatedly add ears. By Lemma 3.1, the
result will always be 2-connected.

2For the purposes of this topic, we will switch back and forth between thinking of paths as sequences of vertices
(as we defined them at the beginning of the semester) and as subgraphs of G.
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An ear decomposition of G is a sequence of ear-adding steps that starts at a cycle graph and ends
at G. This is a proof that G is 2-connected. Formally, an ear decomposition is a decomposition
of G into a union G = R1 ∪R2 ∪ · · · ∪Rk

3 where:

• R1 is a cycle.

• For each i ≥ 1, Ri+1 is an ear of R1 ∪R2 ∪ · · · ∪Ri.

• To be clear (this follows both from the definition of an ear, and from the definition of a
decomposition) there are no edges shared between R1, R2, . . . , Rk: each edge of G is in exactly
one of these graphs.

For example, here is a proof by ear decomposition that the cube graph is 2-connected:

Does such a proof always exist? Yes!

Theorem 3.2. If G is a 2-connected graph, then it has an ear decomposition.

Proof. To prove this theorem, we have to reason in the opposite way from Lemma 3.1.

To find the ear decomposition G = R1∪R2∪· · ·∪Rk, we can start by letting R1 be any cycle in G.
Why does a cycle exist? Well, we know G is connected and has at least three vertices. If G had no
cycles, it would be a tree—but then, any non-leaf vertex would be a cut vertex, contradicting our
assumption that G is 2-connected.

Next, suppose we’ve constructed R1 ∪R2 ∪ · · · ∪Ri, but it’s still a proper subgraph of G. We’d like
to be able to make it bigger, by adding an ear—but adding an ear that’s still entirely contained in
G.

Let Vi be the set of vertices included in R1, R2, . . . , Ri. The first question is: is Vi = V (G)? If it
is, then we’re nearly done, and continuing the ear decomposition is easy. Pick any edge of G not
in R1 ∪R2 ∪ · · · ∪Ri, and make that edge its own ear. (We will continue by adding the rest of the
edges, one at a time.)

So suppose instead that Vi ̸= V (G). Because G is connected, it must have some edge xy where
x ∈ Vi and y /∈ Vi. We will try to construct an ear that begins with the edge xy.

Because G−x is also connected (that’s what it means for G to be 2-connected!) we can find a path
in G−x from y to any other vertex we choose. Let’s make that other vertex a vertex z ∈ Vi (other
than x). The graph G− x must contain a y − z path; how does this path help us?

Well, let (v0, v1, v2, . . . , vk) be the sequence of vertices along this path, with v0 = y and vk = z.
Since v0 /∈ Vi and vk ∈ Vi, there must be some positive integer j such that vj is the first vertex of
the path in Vi. (We might have vj = vk = z, or we might have j < k.)

3The R stands for “eaR”. Silly, I know, but the letter E is usually reserved for edge sets.
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Now let Ri+1 be the path (x, v0, v1, . . . , vj). By construction, this path starts and ends in Vi, but
all its intermediate vertices are outside Vi, so it is in fact an ear of R1 ∪R2 ∪ · · · ∪Ri, as desired.

In both cases, we’ve constructed a new ear Ri+1, making R1 ∪R2 ∪ · · · ∪Ri+1 bigger. Keep going
until we end up building all of G.

An important observation is that no matter how we’ve constructed R1∪R2∪ · · ·∪Ri, if we haven’t
finished, then we can always choose Ri+1 somehow. This is what makes the algorithm in the proof
a greedy one: at each step, it is enough to add some ear, and we don’t have to worry about our
earlier choices leading us to a dead end. (In particular, we do not have to follow the exact algorithm
suggested in the proof for finding an ear, and for small graphs, doing so would just make our life
needlessly complicated.)

4 From ears to Theorem 2.1

Having an ear decomposition of a graph is useful for practical purposes: it is a quick proof that our
graph is 2-connected. It is also useful for theoretical purposes: many proofs for 2-connected graphs
become simpler if we start with an ear decomposition. We’ll see an example of this, by using the
idea of ear decompositions to prove Theorem 2.1.

This will be a complicated proof, so we’ll begin with some preliminary lemmas. The first is a
boring one that we’ll never need again, because Theorem 2.1 will replace it as soon as we’ve proved
it.

Lemma 4.1. If G is 2-connected, and v is any vertex, then G has a cycle containing v.

Proof. If v only had one neighbor, then we could delete that neighbor and disconnect v from the
rest of G, violating the assumption that G is 2-connected. Therefore v has at least 2 neighbors.

Let u and w be two neighbors of G. Because G is 2-connected, there is a u−w path in G− v. Let
(v0, v1, v2, . . . , vk) with u = v0 and w = vk be that path. Then (v, v0, v1, v2, . . . , vk, v) is a cycle in
G containing v.

The importance of Lemma 4.1 is that it lets us pick a particular ear decomposition: one in which
vertex v is in the initial ear G1.

The next lemma is not boring. It comes up often in the study of 2-connected graphs.

Lemma 4.2. If G is 2-connected, and u, v, w are any three vertices, then G has a u−w path that
passes through v.

Proof. By Lemma 4.1, there is a cycle containing v; call that cycle R1. By Theorem 3.2, this cycle
can be the first ear of an ear decomposition of G. What we’ll do is prove by induction that as we
build up G in such an ear decomposition, this lemma will hold for any two vertices u and w in the
graph we’ve built.

Initially, that’s the case. If u and w are any two vertices of the cycle R1, then the cycle contains
two u− w paths, and one of those u− w paths passes through v.
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Suppose that the lemma holds for the graph R1 ∪R2 ∪ · · · ∪Ri, and we’re adding the ear Ri+1. We
consider the following cases.

Case 1a. Vertex u is a vertex of R1 ∪R2 ∪ · · · ∪Ri, but vertex w is an internal vertex of the new
ear Ri+1.

In this case, let w′ be any endpoint of Ri+1. Since w′ already existed in R1 ∪R2 ∪ · · · ∪Ri, by our
inductive hypothesis, there is a u− w′ path passing through v. By tacking on part of Ri+1 at the
end, we can extend this to a u− w path passing through v.

Case 1b. Vertex u is an internal vertex of the new ear Ri+1, but vertex w is a vertex of R1 ∪R2 ∪
· · · ∪Ri. This case is identical to Case 1, with the names u and w swapped.

Case 2. Both u and w are internal vertices of the new ear Ri+1.

In this case, let u′ and w′ be the endpoints of Gi+1, chosen so that u′ is closer to u than to w on
the path, and w′ is closer to w than to u. This means that inside Ri+1, there is a u− u′ path and
a w′ − w path that do not intersect.

By our inductive hypothesis, there is a u′ − w′ path in R1 ∪ R2 ∪ · · · ∪ Ri that contains v. If we
tack on the u− u′ path at the beginning and the w′ −w path at the end, we get a u−w path that
contains v.

In all cases, the lemma continues to be true when we add an ear; therefore it is true in G.

Now we are ready to prove the main theorem.

Proof of Theorem 2.1. Let x and y be two vertices of G; we want to show that there is a cycle in
G containing both x and y.

By Lemma 4.1, there is a cycle in G containing x; call that cycle R1. If y also lies on R1, we are
done. Otherwise, by Theorem 3.2, R1 can be the first ear of an ear decomposition of G; let’s wait
until y appears later in that ear decomposition, and see what happens.

Suppose that y appears when we’re adding ear Ri+1 to the graph R1 ∪R2 ∪ · · · ∪Ri. Let u and w
be the endpoints of ear Ri+1. By Lemma 4.2, there is a u − w path in R1 ∪ R2 ∪ · · · ∪ Ri passing
through x.

Combine this with Ri+1 (another u−w path, which has no vertices in common with the first) and
we get a cycle. It still passes through x, and it also passes through y (because y lies on Ri+1), so
it is the cycle we wanted.
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5 Practice problems

1. Let G be a graph consisting of two copies of K5 joined at a vertex:

How many spanning trees does G have? (Recall that Kn has nn−2 spanning trees.)

2. Suppose G has a cut vertex v, and that the graphs H1, H2, . . . ,Hk are defined as in the first
section of these lecture notes.

(a) Explain why knowing the independence numbers α(H1), α(H2), . . . , α(Hk) is not enough
to find α(G).

(b) Without knowing G, if all I tell you is the values of α(H1), α(H2), . . . , α(Hk), what are
the minimum and maximum possible values of α(G)?

3. Find an ear decomposition of:

(a) K3,3.

(b) K2,5.

(c) K2,n for every n.

4. You might wonder: is there a shortest ear decomposition in a graph? In fact, every ear
decomposition contains the same number of pieces.

(a) Suppose that G has the ear decomposition R1 ∪ R2 ∪ · · · ∪ Rk, where R1 is a cycle of
length ℓ1 and for each i ≥ 2, Ri is a path of length ℓi.

Find the number of edges in G in terms of ℓ1, ℓ2, . . . , ℓk. (This is the easier part.)

(b) Find the number of vertices in G in terms of ℓ1, ℓ2, . . . , ℓk. (This is a bit trickier; think
about how many vertices in each Ri are new to G.)

(c) If G has n vertices, m edges, and k ears in an ear decomposition, find a relationship
between n, m, and k from your answers to the first two parts.

Conclude that the value of k is predetermined by G, and doesn’t depend on the ear
decomposition.

5. One way to interpret Theorem 2.1 is that for any two vertices x, y in a 2-connected graph G,
there are two x − y paths that share none of their internal vertices. Here is an incorrect
proof of a false generalization:

Claim. If G is 2-connected and P is any x − y path, there is a second x − y path P ′ that
shares no vertices with P other than x and y.

“Proof”. Suppose there is no such path P ′. That means that all other paths P ′ end up
sharing some other vertex of P . But then, deleting that vertex of P destroys all x − y
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paths, and so that vertex was a cut vertex. This cannot happen in a 2-connected graph;
contradiction! So a path P ′ must exist.

(a) Point out the mistake in the proof.

(b) Give a counterexample to the claim.

6. Prove that if G is 2-connected and e, e′ are any two edges, then G has a cycle containing both
e and e′.

7. The ear decompositions in this lecture are sometimes called proper ear decompositions.
There is also a corresponding notion of improper ear decompositions. In the improper case,
an ear of a graph G is also allowed4 to be a cycle in which every vertex except one has degree
2. (That is, when we add an ear, we are allowed to start and end at the same vertex.)

(a) Prove by example that a graph with an improper ear decomposition is not necessarily
2-connected.

Instead, improper ear decompositions correspond to 2-edge-connected graphs: graphs
which remain connected when any edge is deleted. In other words, 2-edge-connected graphs
are graphs with no bridges.

(b) Prove that if a graph G has an improper ear decomposition, then it is 2-edge-connected.
(Recall that an edge is a bridge if and only if it does not lie on any cycles.)

(c) Prove that if a graph is 2-edge-connected, then it has an improper ear decomposition.
(You can follow the proof of Theorem 3.2, with some changes.)

8. There is an alternate proof of Theorem 2.1 which does not use ear decompositions. Instead,
we prove that any two vertices v, w lie on a common cycle by inducting on the distance
d(v, w). (I will phrase this in the equivalent way that there are two internally disjoint v − w
paths.)

(a) For the base case, prove (without relying on any of our other results) that if G is two-
connected, then for any edge vw ∈ E(G), there is a cycle containing vw.

(b) For the induction step, we assume that Theorem 2.1 holds for any two vertices at some
distance k ≥ 1, and let v, w be two vertices with d(v, w) = k+1. To apply the inductive
hypothesis, we let x be the first vertex on a shortest v − w path, so that d(x,w) = k.
Let P and Q be two internally disjoint x−w paths, and let R be a v−w path in G−x,
as shown below:

P

Q

R

v x w

Prove that no matter how R intersects P and Q, we can find two internally-disjoint v−w
paths.

4An “improper” ear decomposition should maybe be called a “not-necessarily-proper” ear decomposition: we do
not require it not to be proper.
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