Math 3322: Graph Theory! Mikhail Lavrov

Lecture 28: Menger’s theorem
November 21, 2024 Kennesaw State University

1 The plan

Our goal for this lecture is to prove Menger’s theorem:

Theorem 1.1 (Menger). Let s,t be two non-adjacent vertices of G. Then G contains a collection
of k(s,t) internally disjoint s — t paths, where k(s,t) is the size of a smallest s —t cut in G.

Many proofs of Menger’s theorem are known. None of them are particularly simple, but we will
look at a proof where part of the complexity is hidden: it is pushed off to Konig’s theorem, which
we proved earlier in the semester. Konig’s theorem will let us prove a special case of the theorem,
and then we will reduce other cases to this special case.

The relationship between these two theorems is actually important in practice, where it is used in a
different way: it lets us reduce the problem of finding bipartite matchings (which Kénig’s theorem
deals with) to the problem of finding internally disjoint s — ¢ paths in Menger’s theorem. This
is useful, because linear programming and network flow methods let us solve the second problem
efficiently.

A final thought: how do multigraphs and directed graphs interact with Menger’s theorem?

It turns out that going from simple graphs to multigraphs doesn’t really change anything about
the problem. If we want to find internally disjoint s — ¢ paths, then adding loops or parallel edges
will not make our task easier: even if there many edges between vertices v and w, we can only use
one of them, because we can only use vertices v and w once. Loops and parallel edges will also
not affect s —t cuts: deleting a vertex also destroys all the edges using that vertex, no matter how
many parallel edges there are.

There is a directed version of Menger’s theorem. For directed graphs, a directed s — ¢t cut is
specifically a set of vertices whose removal destroys all directed s — ¢ paths. (This is different from
a directed t — s cut, which destroys all directed ¢ — s paths!) If our internally disjoint s — ¢ paths
are also directed, then Menger’s theorem continues to hold.

We will not think about directed graphs when we prove Menger’s theorem, but with a bit of care
in the details, our proof will also work in that case.
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2 Konig’s theorem and s —t cuts

Recall that:

e &/(G) is the number of edges in a largest matching in G: a largest set of edges that share no
endpoints.

e (@) is the number of vertices in a smallest vertex cover in G: a smallest set of vertices that
contains at least one endpoint of every edge.

Konig’s theorem says that when G is bipartite, o/ (G) = 5(G).

To see the connection to Menger’s theorem, take the following graph as an example:

Every s —t path in this graph must use at least one edge of the form v;w;. After all, it has to get
from the top half of the graph to the bottom half somehow! And once we decide on an edge of this
form to use, we might as well simply make the path go (s,v;, w;,t). Even though there are very
indirect paths like (s, v, w1, v3, we,ws,t), every such path contains a short s — ¢ path, plus some
extra vertices.

As a result:

o A set of vertices is an s —t cut if and only if it destroys all paths of the form (s, v;, wj,t). We
cannot remove either s or ¢, so an s —t cut must contain either v; or w; for every edge v;w;.

This is exactly the same as a vertex cover of the bipartite graph consisting of all edges between
{v1,v2,v3} and {wy, w2, w3, wa}.

e A collection of internally disjoint s — ¢ paths might as well be reduced to a collection of
internally disjoint paths of the form (s, v;, w;,t). These paths are internally disjoint if they
do not share any of the v and w vertices.

This happens exactly when the v;w; edges used by the path form a matching of the bipartite
graph.

So we see that for a graph like this one, Menger’s theorem says exactly the same thing as Konig’s
theorem!

What is “a graph like this one”? We can apply this argument whenever we can split V(G) — {s,t}
into a set {vy,va,...,v;} (the neighbors of s) and a set {wy,ws,...,w;} (the neighbors of ¢). In
other words, when every vertex of G other than s and ¢ is adjacent to one of s or ¢, but not
both.



3 Dealing with other cases

Now we just have to handle all the other cases, when the graph does not have this structure.

Our reasoning here will be that in all other cases, we can keep reducing the problem to a simpler
problem: we can turn G into a smaller graph H such that proving the theorem for H will also
prove it for G. If we can always do this, then it means that the case we’ve already solved is in some
sense the only hard case.

You can think of this as a complicated induction on the number of vertices in GG, where the base
case is the case we proved in the previous section.

3.1 Vertices adjacent to both s and ¢

One of the ways G can fail to have the “Ko6nig-structure” is if there is a vertex v adjacent to both s
and t.

In this case, u must be part of every s—t cut: if u is not deleted, there is an s—t path (s, u,t).
Also, the path (s,u,t) is going to be internally disjoint to every s — t path not containing wu.

So in this case, let H = G — u. If we could prove Menger’s theorem for H, we would get kg (s,t)
internally disjoint s — ¢ paths in H. What’s more, we know that kp(s,t) = kg(s,t) — 1, because
we've deleted a vertex which is part of every s — ¢ cut, so we now have kg(s,t) — 1 internally
disjoint s — t paths.

We can get the last path by taking the path (s, u,t), which is guaranteed to be internally disjoint
from every s —t path in H. Therefore if Menger’s theorem is true for H, it is also true for G.

3.2 Vertices not part of a minimum cut
In this section and the next, we’ll deal with vertices u that are adjacent to neither s nor t.

These vertices are very easy to deal with if they are not part of any minimum s — ¢ cut. In that
case, once again, we’ll let H = G — u, and show that Menger’s theorem for H implies Menger’s
theorem for G.

If w is not part of any minimum s — ¢ cut, that exactly means kg (s,t) = kg(s,t). If we deleted
a vertex that is not part of some efficient way to disconnect s from ¢, we have not made any
progress.

Therefore if Menger’s theorem is true for H, it gives us kg(s, t) internally disjoint s — ¢ paths in H,
and that proves the theorem for G even without having to use u.

3.3 Nontrivial minimum cuts

The last case of the theorem is the trickiest. Here, we have to deal with vertices u not adjacent
to s or t, but that are still important—they’re part of some minimum s — ¢ cut.

In such a case, we’ll take a step back and pick some s —t cut U, with |U| = kg(s,t), that does not
just consist of s’s neighbors or t’s neighbors.



Because s is not connected to t in G — U, we can split up G into two pieces:

e (G, is the induced subgraph “between s and U”. It includes all vertices that can be reached
by a path from s without going through a vertex in U (but including the vertices in U
themselves).

Because U is an s — t cut, G5 does not contain the vertex ¢; it may be missing some other
vertices.

e (§; is the induced subgraph “between U and t”. It includes U, and all the vertices that cannot
be reached by a path from s without going through a vertex in U.

The only vertices G5 and G; have in common are the vertices of U.

Here’s an illustration in the case |U| = 2 (where U = {uj,u2}):
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Now we reduce the problem not to one smaller problem but two.

e In the first graph, Hi, leave G5 alone and replace G; by only the single vertex ¢ adjacent
to uy, ..., ug.

e In the second graph, Hs, leave G; alone and replace G5 by only the single vertex s adjacent
to ULy -y Uk-

Here is an illustration of what happens to our graph in this case:
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It’s important to know that the set U does not just consist of neighbors of s, or not just of neighbors
of t. This means that both H; and Hy actually have fewer vertices than G: we really are reducing
to a smaller problem.

What do s — ¢t cuts in H; and Hs look like? We can think of an s — ¢ cut in H; as being a set
of vertices that prevents us from leaving Gs (because if we leave G, we end up in t). Deleting
those same vertices in G will also prevent us from leaving G4 (because up until we leave G, the
two graphs are the same). So an s — ¢ cut in Hj is also an s — ¢t cut in G. We conclude that
ki, (8,t) > kg(s,t). In the same way, we prove K, (s,t) > kg(s,t).

Actually, we must have kg, (s,t) = kg(s,t) = km,(s,t) for the following reason: U continues to be
an s — t cut in all three graphs!

So if we prove Menger’s theorem for both H; and Hs, we can get kg (s,t) s —t paths in Hj, and
also kg (s,t) s —t paths in He. These can be glued together to get k internally disjoint s — ¢ paths



in GG; here’s how.

For each i, take the s — t path we found in H; that goes through u;: (s, (some stuff), u;,t). Also,
take the s — t path we found in Hy that goes through w;: (s,u;, (some other stuff),t). Join them
together at wu;:

(s, (some stuff), u;, (some other stuff), ).

These are internally disjoint: they can’t intersect in G4 (because otherwise the corresponding paths
in H; would also intersect) and they can’t intersect in G; (because otherwise the corresponding
paths in Hs would also intersect).

Here’s an illustration of how to do this in our example. Here are two s — t paths in our H;
and Ho:
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When we combine them, we get two s — ¢ paths in G:
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So once again, proving Menger’s theorem for the two smaller cases Hq, Ho proves Menger’s theorem
for G.

We’ve successfully done this reduction in all cases that we can’t prove by using Konig’s theorem,
so we have a complete proof of Menger’s theorem!



4 Practice problems
There are many extensions of k-connectivity that we don’t have time to cover. Here are a few to

think about.

1. Prove the following generalization of Dirac’s fan lemma (see the practice problems from the
previous lecture):

Let s be a vertex in G and let U be a subset of V(G) — s with |U| > k(G). Then we can find
a subset 7' C U with |T'| = k(G) such that G contains an s — 7' fan which does not share any
other vertices with U.

(Hint: start by forgetting the clause “which does not share any other vertices with U”.)

2. Prove that if G is 3-connected, then for any three vertices ui, us, us, G contains a cycle that
passes through all three of them.

(Hint: the previous problem can help.)

More generally, it is true that if G is k-connected, then for any k vertices, G contains a cycle
through all & of them (in some order). If you're brave, try proving this by induction on k.

3. In a graph G, an s —t edge cut is a set of edges whose removal disconnects s from t. We
write k'(s,t) for the least number of edges in an s — t edge cut. (This is now always defined,
whether or not s and ¢ are adjacent.)

Here, too, we can prove a lower bound on «/(s,t) by finding a collection of s — ¢ paths. What
condition should replace “internally disjoint” here, and why?

(By the way, Menger’s theorem also holds for edge cuts.)
4. There is a surprising connection between connectivity and planar graphs.

In general, we can define the dual graph of a plane embedding, but the dual graph of a planar
graph is not well-defined: different plane embeddings can give different, non-isomorphic dual
graphs.

However, if G is a planar graph and x(G) > 3, then this does not happen: two dual graphs
that come from different plane embeddings of G are necessarily isomorphic.

Proving this is hard. For this exercise, just give an example of a planar graph G with x(G) = 2
in which two different embeddings give non-isomorphic dual graphs, and think about how the
2-vertex cut is “responsible” for this problem.
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