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1 Bipartite graphs

As motivation, consider the following problem. You’re in charge of the math department, and so
you have to pick who teaches which classes. You start with the following information:

• A list of all the classes that must be offered.

• A list of all the possible instructors that can teach them.

• Each instructor has a list of things they’re willing to teach, and a list of thing they’re not
willing to teach.

In the simplest version of the scheduling problem, each class is taught exactly once, and each person
teaches exactly one class. (This is called the matching problem; we will return to it later in the
semester.)

We can model this data as a graph: make all the classes and all the instructors vertices, and put
an edge from each instructor to the classes they’re willing to teach. Something like this:

Amy Bob Carl Dana

Graph
Theory

Abstract
Algebra

Complex
Analysis

Quantum
Computing

This is an example of a bipartite graph. A bipartite graph is a graph G whose vertex set V (G)
can be split into two parts A and B, such that every edge has one endpoint in A and one endpoint
in B.

Bipartite graphs show up in graph theory for two reasons:

1. Sometimes, our data is inherently “bipartite”. In the example above, we can take the bipar-
tition A = {Amy,Bob,Carl,Dana} and

B = {Graph Theory,Abstract Algebra,Complex analysis,Quantum Computing}

and we know all edges go between A and B because of how the graph is defined.

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/

3322-fall-2024
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2. Sometimes, a graph will turn out to be bipartite because of some hidden property of the
graph that we didn’t see coming ahead of time. Often, this helps us understand the graph
better once we do discover that it’s bipartite.

How can we discover that a graph is bipartite? Here is an algorithm we can use. It will try to
build a bipartition, and either it will succeed, or it will fail and we will know the graph is not
bipartite.

1. Pick any vertex v. Arbitrarily put v on side A of the bipartition: this is fine, because the two
sides are symmetric, so we can’t make the wrong choice here.

2. Put every neighbor of v on side B of the bipartition. This is the only choice we can make: if
any neighbor of v were on side A, we would have an edge between two vertices of A.

3. For each vertex we just put on side B, take their neighbors, and put those on side A. Again,
this is the only choice we can make to avoid having an edge between two vertices of B.

4. Repeat these steps: when we assign a vertex to one side, assign all its neighbors to the other
side.

What if some of its neighbors have already been assigned to a side? Well, if they were assigned
to the side we were going to put them on anyway, there’s no problem. But if we discover that
a vertex has a neighbor that’s already been assigned to the same side, then we’re not getting
a valid bipartition!

If this ever happens, we know the graph is not bipartite. At each step, we were making the
only choice we could, and we still got stuck.

5. If the graph is connected, we’ll eventually assign all vertices to a side in this way. If the graph
is not connected, repeat for every connected component! Like many other problems, this one
can be solved separately for different connected components.

This algorithm might look similar to our method of finding all distances from v. In fact, if we
compare what the two algorithms do, we can realize that this algorithm puts w on side A if d(v, w)
is even, and on side B if d(v, w) is odd.

That’s the story from the point of view of algorithms. From the point of view of theorems and
proofs, there’s a useful characterization of bipartite graphs: the theorem below.

Theorem 1.1. The following are equivalent for a graph G:

1. G is bipartite.

2. G has no closed walks of odd length.

3. G has no cycles of odd length.

Before we go on to prove this theorem, let’s ask: why is it useful? Because it always gives us
something to use about G.

If we’re assuming that a graph is bipartite, or proving that the graph is bipartite, the definition is
useful: it means we can assume that a bipartition exists, or try to construct one.
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If we’re assuming that a graph is not bipartite, it’s more useful to use condition 3 of the theorem,
and assume that G has an odd cycle. This gives us a concrete fact about G to start from.

Finally, if we’re proving that a graph is not bipartite, it’s more useful to use condition 2, and try to
construct a closed walk of odd length. (That’s marginally easier than trying to construct a cycle;
we don’t have to worry about repeated vertices.)

Proof of Theorem 1.1. Suppose G has a bipartition (A,B), but also a closed walk (v0, v1, . . . , v2k+1)
with v0 = v2k+1. Let’s say v0 ∈ A; this assumption is without loss of generality because the
proof would be identical if we put v0 ∈ B.2

Then v1 ∈ B, or else the edge v0v1 would have both endpoints in A. By the same logic, v2 ∈ A,
v3 ∈ B, and so on. In a way that formally ought to be done by induction, we conclude: vi ∈ A if
i is even and vi ∈ B when i is odd. Therefore v2k+1 ∈ B; but v2k+1 = v0, and we already decided
that v0 ∈ A. This is a contradiction! Therefore G cannot have both a bipartition and a closed odd
walk: condition 1 implies condition 2.

Suppose G is not bipartite. Then if we follow our bipartition algorithm starting from some vertex
v, we’ll eventually fail: both endpoints of an edge xy will both be put on the same side of the
bipartition. By our observation about distances, this means that d(v, x) and d(v, y) are both even
or both odd.

Consider the following closed walk: follow a shortest path from v to x, then take the edge xy, then
follow the reverse of a shortest path from v to y. This has total length d(v, x) + 1 + d(v, y), which
is an odd number. So if G is not bipartite, it has a closed walk of odd length. This means that
condition 2 implies condition 1: if G has no closed walks of odd length, it is bipartite.

Condition 2 implies condition 3, because all cycles are closed walks: condition 2 is just a more
general statement. So we’ll be done with the proof if we show that condition 3 implies condition 2.
To do this, suppose G has a closed walk of odd length; we’ll show that G also has a cycle of odd
length.

Use the extremal principle, and pick a shortest closed walk of odd length: (v0, v1, v2, . . . , v2k+1).
That length is not 1: (v0, v1) is never a closed walk in our graphs, since a vertex is never adjacent
to itself.

So the length is at least 3, and either it is a cycle, or else we have vi = vj for 0 ≤ i < j < 2k + 1.
This gives us two shorter closed walks:

• Closed walk (vi, vi+1, . . . , vj), with length j − i.

• Closed walk (v0, v1, . . . , vi, vj+1, . . . , v2k+1), with length 2k + 1− (j − i).

These two lengths add up to 2k+1, which is odd. So at least one of the lengths is odd—and shorter
than 2k + 1. This contradicts our assumption that our closed walk of odd length was as short as
possible. So the closed walk we took must already be a cycle, completing our proof.

2This logic is very common. Often, we’ll just say a shorter phrase: “Without loss of generality, v0 ∈ A.”
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2 Graph zoo

The previous section was full of new ideas and long proofs; here, we’ll just look at some graphs
that have names. These graphs show up over and over again, so they’re useful to know.

2.1 The essential graphs

The first is the path graph Pn. It has n vertices v1, v2, . . . , vn and n − 1 edges: vivi+1 for
i = 1, 2, . . . , n− 1. Here is a diagram:

. . .
v1 v2 v3 vn−1 vn

Among other reasons, the path graph is useful to know because it gives us a way to think about
paths. We’ve been saying that a path is a special kind of walk: a sequence of vertices. But we can
also think of a path as a subgraph: a subgraph that is isomorphic3 to Pn for some n.

Next is the cycle graph Cn. (Here, we require n ≥ 3 for the definition to work.) It has n vertices
v1, v2, . . . , vn and n edges: the edges of Pn, plus the edge v1vn. Here is a diagram:

. . .
v1 v2 v3 vn−1 vn

This has a similar relationship to cycles: we can think of a cycle in a graph G not just as a special
kind of closed walk, but as a subgraph isomorphic to Cn for some n.

The complete graph or clique Kn is the graph with the most edges for its vertex set. It has n
vertices v1, v2, . . . , vn and all possible edges vivj with i ̸= j. There are

(
n
2

)
= n(n−1)

2 edges: that’s
how many ways there are to choose two endpoints. Here are diagrams of K3, K4, K5, and K6:

The complete bipartite graph Km,n is a bipartite graph with as many edges as it could possibly
have. It has vertex set {v1, v2, . . . , vm, w1, w2, . . . , wn}; its bipartition will be A = {v1, v2, . . . , vm}
and B = {w1, w2, . . . , wn}. The only allowed edges have the form viwj , and Km,n has all of these
edges.

Here are some examples. From left to right, these are K1,4, K3,3, and K5,2:

v1

w1 w2 w3 w4

v1 v2 v3

w1 w2 w3

v1 v2 v3 v4 v5

w1 w2

3We’ll talk about isomorphisms formally later on in the semester. For now, think of “is isomorphic to” as a fancy
way to say “looks like”.
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2.2 More graphs it is useful to know

The graphs in the previous section are graphs every graph theorist knows. Here are a couple more
that are less foundational, but which we’ll often use in examples.

The cube graphQ3 has vertices {(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)}
and an edge between any two vertices that differ in one coordinate. It looks like a cube when we
draw a diagram. It generalizes to Qd: a graph with 2d vertices defined by the same rule, but with
vertex set {0, 1}d. Q3 is shown below on the left:

000 010

100 110

001 011

101 111

The Petersen graph, which we’ve already seen, can be defined by the following rule. Its vertices
are pairs of elements of {1, 2, 3, 4, 5}: they are {1, 2}, {1, 3}, . . . , {4, 5}. Two vertices {a, b} and
{c, d} are adjacent if they have no elements in common: the intersection {a, b} ∩ {c, d} is empty.
(See also Exercise 4.)

2.3 Operations on graphs

The simplest operation on graphs is the complement of a graph. If G is any graph, then its
complement G is a graph with all the same vertices, but exactly the edges that G does not have.
For any two vertices u and v, either uv is an edge of G, or it is an edge of G, but not both. For
example, here are diagrams of K3,2 and of its complement K3,2:

v1 v2 v3

w1 w2

v1 v2 v3

w1 w2

When we take the union G ∪H of two graphs, we must be careful. In full generality, G ∪H has
all vertices of G and H, and all the edges of both. The most useful versions of this are:

• When G and H have the same vertices, their union just combines the edges: it is the overlap
of G and H. We often want to know when a graph is the union of simpler graphs in this way.
For example, can you represent K8 as the union of three bipartite graphs?

• When G and H have no vertices in common, and G∪H just has all of G and all of H inside
it, with no edges between them. This is a common way to denote connected components.

Sometimes people write ∪ to mean a “disjoint union” in which the vertices are relabeled to be
different. For example, we might write the graph K3,2 as K3 ∪K2 to represent its connected
components, even though formally K3 ∪K2 would just have three vertices.
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3 Practice problems

1. Among the small named graphs P2, P3,K2,K3, C3, C4,K1,1,K1,2,K2,1,K2,2, Q2 there are a
few “overlaps”: two (or more) names for essentially the same graph. (In some cases, with
different vertex names, but you can give them the same diagram with different labels.)

Find all the overlaps.

2. (a) Suppose we take the disjoint union of two copies of Kn; let’s say that one of them has
vertex set {v1, v2, . . . , vn} as usual, but the other one has vertex set {w1, w2, . . . , wn}
instead. Then, we take the complement.

What is the graph we get?

(b) Suppose we take the disjoint union of three complete graphs Ka, Kb, and Kc, then take
the complement.

Describe the graph we get directly (by saying what its vertices and edges are). What
would be a good name for this graph?

3. The cube graph Q3 (and, in general, Qd for any d) is bipartite. What is the bipartition?

(If you’re ambitious, try it for all d; either way, you should start with Q3 or even Q2.)

4. Our definition of the Petersen graph says: its vertices are pairs of elements of {1, 2, 3, 4, 5}:
they are {1, 2}, {1, 3}, . . . , {4, 5}. Two vertices {a, b} and {c, d} are adjacent if they have no
elements in common: the intersection {a, b} ∩ {c, d} is empty.

Below are two diagrams of the Petersen graph (I claim). Prove it! That is, show a way to
label the vertices of the graph in each diagram with pairs {a, b} such that adjacent vertices
are labeled with pairs that have no elements in common.

5. Earlier in class, we proved that whenever G has an odd closed walk, it also has an odd cycle.

The same thing doesn’t work if “odd” is replaced by “even”. Why not?

(a) Explain where in the proof the argument fails for even closed walks.

(b) Give an example of an even closed walk in a graph with no even cycles.

(Side note: these are the two ways you can disagree with a mathematical argument, and they
both have their place. The first one is saying, “Here, you made a mistake. Your claim may
still be true, but you haven’t given a valid proof.” The second one is saying, “I don’t see how
your proof is wrong, but it must be; here is a counterexample to the claim.” The best thing to
do, of course, is to give both, if you can!)
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6. Prove that if G is a bipartite graph, and H is a subgraph of G, then H is also bipartite.

7. Prove that if G is a bipartite graph on n ≥ 5 vertices, then the complement of G is not
bipartite.

8. For which bipartite graphs G is it true that the complement of G is connected? Prove your
answer.
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