
Math 3322: Graph Theory1 Mikhail Lavrov

Lecture 8: Degree sequences

September 5, 2024 Kennesaw State University

1 The graphic sequence algorithm

1.1 What the algorithm does

Let’s summarize the algorithm from the previous lecture which tests if a sequence is graphic.

It begins by a cycle of steps that make the sequence shorter and shorter. Given a sequence of
degrees, we:

1. Sort the sequence, so that it’s ordered d1, d2, . . . , dn with d1 ≥ d2 ≥ · · · ≥ dn.

2. Delete the first term d1, and subtract 1 from the next d1 terms, leaving the sequence d2 −
1, d3 − 1, . . . , dd1+1 − 1, dd1+2, . . . , dn.

From here, there are several options:

• This sequence has n − 1 terms. If they are not all in the range 0 to n − 2, we immediately
give up: the sequence we got is not graphic.

• If we get to a sequence which we know is graphic, we can draw a graph with that degree
sequence. (It’s enough for the algorithm to work if you do this when the sequence is 0, 0, . . . , 0,
in which case we draw the empty graph.)

• Most of the time, we go back and repeat this operation.

Once we’ve simplified the sequence enough, we can draw a graph of that degree sequence. We will
draw the graph so it has the degrees we want in order, from left to right.2 Then we undo all the
sort and delete steps we did above, in reverse order:

1. When we undelete a term d, we add a new vertex to the left of all the vertices, and add d
edges from that vertex to the next d vertices in order.

2. When we unsort the graph, we rearrange our drawing so that the vertices have the degrees
we want in the order we wanted them.

The goal: given a graph that realizes the length-(n−1) degree sequence, the undelete and unsort
operations should give us a graph that realizes the length-n degree sequence.

Then, we repeat these two steps until we get back to the original degree sequence.

1This document comes from an archive of the Math 3322 course webpage: http://misha.fish/archive/

3322-fall-2024
2The graph doesn’t care how we draw it, but this is the order we’ll use when talking about the “next” d vertices

after the first vertex.

1

http://misha.fish/archive/3322-fall-2024
http://misha.fish/archive/3322-fall-2024

1.2 Guarantees about the algorithm

Given a sequence, the algorithm either gives up, or finds a graph with that degree sequence. The
only worry is: will the algorithm ever give up, even though we started with a graphic degree
sequence?

The algorithm only gives up when the current, shorter degree sequence is obviously not graphic.
So another way to restate our worry is: do we ever go from a length-n graphic sequence to a
length-(n− 1) sequence which is no longer graphic?

Our delete operation was based on imagining a realization of our sequence in which the vertex
with degree d1 is adjacent to the vertices with degrees d2, d3, . . . , dd1+1. To prove that this is always
valid, we want the Havel–Hakimi theorem:

Theorem 1.1 (Havel–Hakimi). Let G be a graph with vertex set v1, v2, . . . , vn such that deg(v1) ≥
deg(v2) ≥ · · · ≥ deg(vn). Let d = deg(v1) (which is also the maximum degree ∆(G)).

Then there is a graph H with the same vertex set v1, v2, . . . , vn and the same degrees of each vertex
(with degG(vi) = degH(vi) for all i) in which v1 is adjacent to v2, v3, . . . , vd+1.

In other words: if the sequence d1, d2, . . . , dn is graphic to begin with (if it has a graph G realizing
it) then it also has a graph H realizing it. The conclusion of Theorem 1.1 is set up exactly so that
when we do the delete step, the resulting sequence is the degree sequence of H − v1. So we always
go from a graphic sequence to another graphic sequence.

This makes sure that our algorithm always works: if the sequence is graphic, it will realize it, and
if not, then it will give up eventually.

2 Proof of the Havel–Hakimi theorem

As in the statement of Theorem 1.1, let G be a graph with vertex set v1, v2, . . . , vn such that
deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn). Let d = deg(v1).

We will proceed by an operation called an edge swap, which changes a graph without changing its
degree sequence. An edge swap is the following operation: whenever we find vertices v, w and x, y
such that vw and xy are edges, but vx and wy are not, we delete the edges vw and xy then add
new edges vx and wy. Here is an example of the “before” and “after” of this operation:

v
w

x y

⇝

×

×

v
w

x y

⇝

v
w

x y

We begin by proving a lemma that essentially says “we can always use edge swaps to make progress
toward what we want”. For convenience, let S = {v2, v3, . . . , vd+1}: our goal is to make these
vertices be neighbors of v1.

2

Lemma 2.1. If not all vertices of S are adjacent to v1, we can perform an edge swap to increase
the number of vertices in S which are adjacent to v1.

Proof. Suppose that vk ∈ S is not adjacent to v1. Since |S| = d, and deg(v1) = d, in order for v1
to have d neighbors, it must also be adjacent to some vertex x /∈ S, as shown in Figure 1a.

S

. . .

v1 vk

x

no edge

(a) Vertices vk and x

S

. . .

v1 vk

x y

no edge

no edge

(b) Goal: find y

S

. . .

v1 vk

x y

(c) The key edge swap

Figure 1: The three steps in the proof of Lemma 2.1.

To do an edge swap that replaces edge v1x by edge v1vk, we need to find a fourth vertex: a vertex y
such that vk is adjacent to y, but x is not. (We should see Figure 1b in the graph.)

Here is where the order of degrees in G comes in. Since we sorted the degrees in descending order,
the vertices in S have higher degrees than the vertices not in S (except for v1). In particular,
deg(vk) ≥ deg(x). Moreover, x already has one neighbor that vk does not have: the vertex v1.

Therefore it is impossible for x to be adjacent to every neighbor of vk, and also to v1: then, we’d
have deg(vi) < deg(x). So we can find a neighbor y of vk such that x is not adjacent to y. (In
Figure 1b, y is drawn outside of S, but that is not required; the argument would not change if y
were an element of S.)

Now perform the edge swap which replaces v1x and vky by v1vk and xy (as in Figure 1c). After
this switch, v1 is adjacent to one more vertex of S.

I put Lemma 2.1 first because from here, the proof of Theorem 1.1 is essentially just an application
of the lemma, together with the extremal principle. It is a good exercise to try to do this yourself
before reading ahead.

Proof of the Havel–Hakimi theorem. Of all graphs with the same vertex set and vertex degrees
as G, let H be chosen to maximize the number of neighbors of v1 in S.

Then actually, all vertices of S must be adjacent to v1. If not, we could use Lemma 2.1 to increase
the number of neighbors of v1 in S. But H was chosen to have the largest possible number of such
neighbors, so this can’t happen.

So we have the graph we wanted.

3 More on degree sequences

We only used edge swaps in the proof of the Havel–Hakimi theorem, but they have other applica-
tions. To begin with, we can show the following theorem:

3

Theorem 3.1. If two graphs G and H have the same vertex set V , and degG(v) = degH(v) for all
v ∈ V , then we can turn G into H by doing edge swaps.

Proof. We prove this by induction on the size of V (the common vertex set of G and H).

When |V | = 1, there is nothing to show: there is only one possible graph on 1 vertex.

Assume this is possible for all pairs of (n−1)-vertex graphs, and let G and H both have n vertices.
Let v be a vertex with the highest degree (in both G and H) and let S be the deg(v) vertices with
the highest degrees after v. (This is the same S as in our proof of the Havel–Hakimi theorem and
the edge swap lemma.)

By what we’ve already shown today, we can do edge swaps on G to get a graph G′ in which v’s
neighbors are the vertices in S. We can do the same to H, getting a graph H ′ (and so there is also
a sequence of edge swaps that turn H ′ into H, by reversing those edge swaps).

By induction, there is a sequence of edge swaps that turns G′ − v into H ′ − v (both (n− 1)-vertex
graphs on the same vertex set). We can perform these edge swaps on G′ instead, and they will
work equally well, turning G′ into H ′. Finally, we know that we can turn H ′ into H.

This shows that we can turn G into H, and so by induction, this works when G and H have any
number of vertices.

Why is this theorem useful? Well, we know how to answer two possible questions about potential
degree sequences. . .

1. Is this sequence graphic? (Is it the degree sequence of a graph?)

2. How is this sequence graphic? (Find a graph with this degree sequence.)

. . . but there is a third, harder question we can ask:

3. What is a typical graph with this degree sequence?

That’s deliberately vague. However, Theorem 3.1 can, surprisingly, help us answer this ques-
tion.

What we can do is start with some realization of a degree sequence, then do lots of edge swaps
at random, getting a random graph with this degree sequence.3 We can approximately answer
questions like “are any graphs with this degree sequence bipartite” or “what is the average diameter
of a graph with this degree sequence” by sampling lots of random graphs and doing statistics with
the results.

We can even approximately answer questions like “how many different graphs have this degree
sequence?” To do this, just sample lots of graphs, then count how many repeats you get. Compare
this to how many repeats you’d expect, if there were N possible graphs total. This should let you
estimate the most likely value of N .

3Fine print: this does not sample a graph uniformly at random. Essentially, it samples a graph with probability
proportional to how many edge swaps are possible to do in it. But that’s a known bias we can account for.

4

4 Practice problems

1. Here are some more practice problems for the Havel–Hakimi algorithm. For each sequence,
determine whether or not it is graphic, and if it is, find a graph with this degree sequence.

(a) 5, 5, 5, 3, 3, 3, 3, 3.

(b) 7, 6, 6, 4, 4, 4, 2, 1.

(c) 3, 3, 3, 2, 2, 1, 1.

2. If we can turn any graph G into any graph H with the same degree sequence, using edge
swaps, then we can turn K4,4 into K4,4 using edge swaps.

Specifically, let G be the graph on the left, and letH be the graph on the right. Corresponding
vertices have the same degrees, and both of these graphs have the structure of K4,4, but they
are not the same graph: they have different edges. G has all edges between {a, b, c, d} and
{e, f, g, h}, while H has all edges between {a, b, e, f} and {c, d, g, h}.

a

b c

d

e

f g
h

a

b c

d

e

f g
h

Find a sequence of edge swaps to turn G into H. (Hint: four edge swaps are enough.)

3. Find a graph with 6 vertices and 9 edges in which is not possible to do any edge swaps.

In particular, this means that there is only one possible realization of the degree sequence of
the graph you found.

4. There are 7 possible graphs with the vertex set {v1, v2, v3, v4, v5} such that deg(v1) = deg(v2) =
3 and deg(v3) = deg(v4) = deg(v5) = 2. Find all of them, and demonstrate directly that we
can turn any one of them into any other via edge swaps.

(Hint: of the 7 graphs, there is a “central” example that is one edge swap away from all 6
others.)

5. There is another proof of Theorem 3.1 that is closer to our argument for the Havel–Hakimi
theorem.

Specifically, if G and H have the same vertex set, and every vertex has the same degree in
G and in H, then we can measure “how far away” G and H are from each other by asking:
how many edges does G have that are not also edges of H? Now we can do the following:

(a) Prove that if G and H are not literally the same graph, then there is an edge swap we
can perform on G to reduce “how far away” it is from H.

(b) Prove Theorem 3.1 using part (a).

5

6. Let G be a graph with the vertex set {v1, v2, . . . , vn} such that

deg(v1) ≥ deg(v2) ≥ · · · ≥ deg(vn).

Then deg(v1) (the maximum degree of G) can be at most n − 1; in fact, it can be at most
the number of nonzero degrees among deg(v2), . . . ,deg(vn).

(a) Explain why this is equivalent to the following inequality:

deg(v1) ≤
n∑

i=2

min{deg(vi), 1}.

Here, min{a, b} is simply the smaller of the two numbers a and b.

(b) Prove a 2-vertex version of this inequality:

deg(v1) + deg(v2) ≤ 2 +

n∑
i=3

min{deg(vi), 2}.

(Hint: consider the number of edges between v1, v2 and the rest of the graph. Why is the
“2+” there?)

(c) In general, we have an inequality of the form

k∑
i=1

deg(vi) ≤ f(k) +
n∑

j=k+1

min{deg(vj), k}

for each k ∈ {1, . . . , n}. What is the best possible function f(k) that makes this inequal-

ity true? (I ask for “best possible” because some incredibly big function like f(k) = 22
2k

will also work, but will not be as useful as the smallest possible number you could put
there.)

More is true: a result called the Erdős–Gallai theorem states that if a sequence satisfies the
inequality in part (c) for every k, and the sum of the degrees is even, then the sequence is
graphic. This is an alternative to the Havel–Hakimi algorithm for determining if a sequence
is graphic.

6

	The graphic sequence algorithm
	What the algorithm does
	Guarantees about the algorithm

	Proof of the Havel–Hakimi theorem
	More on degree sequences
	Practice problems

