Math 482: Topics Covered in the Final Exam

Misha Lavrov

May 4, 2020

The final exam will be cumulative, but with added focus on the material covered between Friday, April 17th and Monday, May 4th (which we haven't had an exam on yet). In this document, I go through the new material and point out the things you should know from it.

1 Things you should know

Here are the definitions you should know:

- Totally unimodular matrices.
- Integer programs. (Formally, "integer linear programs" or "mixed integer linear programs".)
- Logical expressions in **conjunctive normal form** (an AND of many OR statements).
- Branch-and-bound terminology. We call each LP we solve a **node** and either **prune** it or **branch** from it.
- Cutting planes and specifically the Gomory fractional cut.
- The restricted primal in the primal-dual simplex method; tight constraints and frozen variables/columns.
- The traveling salesman problem; tours and subtours.
- The approximation ratio of an approximation algorithm.

You should know and understand the following results:

- That the primal-dual algorithm finds the optimal solution if/when it terminates.
- That nonzero variables in the optimal solution to one iteration of the restricted primal will remain present (or unfrozen) in the next iteration.
- That the fractional cut is valid for all integer points of a linear program.
- That both the Dantzig–Fulkerson–Johnson and the Miller–Tucker–Zemlin constraints for the TSP guarantee that the optimal solution to the integer program is a single connected tour.
- The 2-approximation guarantees of the algorithms for vertex cover. (The 2-approximation algorithm for TSP will not be on the exam.)

2 Things you should be able to do

- Write down integer program formulations for various problems (including logical expressions).
- Use either the branch-and-bound method or the cutting plane method (with fractional cuts) to solve an integer linear program.
- Use the primal-dual simplex method to solve a linear program. This includes:
 - The basic method: taking a dual feasible solution, writing down the restricted primal, solving it, finding the dual, and augmenting to get a better dual feasible solution.
 - Starting the method: using an upper bound on the primal variables to transform the problem into one that has a starting dual feasible solution, when the zero vector doesn't work.
 - Using the previous restricted primal solution for the restricted primal in the next iteration: by using the frozen columns approach, or the revised simplex method.