Math 482: Linear Programming

Mikhail Lavrov

Homework \#3

Spring 2020
Due Monday, February 17

1. Let $P \subseteq \mathbb{R}^{3}$ be the convex polyhedron with only the following four extreme points: $(0,0,0)$, $(0,1,1),(1,0,1)$, and $(1,1,0)$.
(a) Write down a set of four linear inequalities describing P.
(b) Show directly from the definition that the point $\left(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$ is not an extreme point of P.
2. Use the two-phase simplex method to solve the following linear program:

$$
\begin{array}{rc}
\underset{x_{1}, x_{2}, x_{3} \in \mathbb{R}}{\operatorname{maximize}} & x_{1}+x_{2}+3 x_{3} \\
\text { subject to } & 2 x_{1} \quad+x_{3}=2 \\
& x_{2}+x_{3}=3 \\
& 4 x_{1}+x_{2}+3 x_{3}=7 \\
& x_{1}, x_{2}, x_{3} \geq 0
\end{array}
$$

3. Use lexicographic pivoting to solve the following linear program:

$$
\begin{array}{ll}
\underset{x, y \in \mathbb{R}}{\operatorname{maximize}} & x-y \\
\text { subject to } & x-2 y \leq 0 \\
& x-3 y \leq 0 \\
& y \leq 3 \\
& x, y \geq 0
\end{array}
$$

4. Consider the following linear program:

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{10}}{\operatorname{maximize}} & x_{1}+2 x_{2}+3 x_{3}+4 x_{4}+2 x_{5}-x_{6}+4 x_{7}+4 x_{8}+2 x_{9}-x_{10} \\
\text { subject to } & x_{1}+x_{2}-x_{3}+2 x_{4}-x_{5}+3 x_{6}+2 x_{7}-x_{8}+x_{9}+2 x_{10}=3 \\
& 3 x_{1}+4 x_{2}+2 x_{3}+7 x_{4}+5 x_{5}+6 x_{6}-2 x_{7}+9 x_{8}+8 x_{9}+9 x_{10}=10 \\
& x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8}, x_{9}, x_{10} \geq 0 .
\end{array}
$$

(a) Starting with basic variables $\mathcal{B}=\left(x_{1}, x_{2}\right)$, compute the inverse matrix $A_{\mathcal{B}}^{-1}$ and the basic feasible solution corresponding to \mathcal{B}.
(b) Perform one iteration of the revised simplex method from the basic feasible solution you found in part (a). Use Bland's rule for pivoting.
Your answer should give the new basis \mathcal{B}, the new inverse matrix $A_{\mathcal{B}}^{-1}$, and the new basic feasible solution.
5. (Only 4-credit students need to do this problem.)

Your friend was solving a linear program with two inequality constraints on the variables x and y, as well as the nonnegativity constraints $x, y \geq 0$. After adding slack variables s_{1}, s_{2} to deal with the constraints, your friend used the simplex method to arrive at the following tableau:

	x	y	s_{1}	s_{2}	
x	1	2	0	0	3
s_{2}	0	1	-1	1	1
$-z$	0	-2	-1	0	-4

Show that your friend must have made a mistake: there is no linear program of the form described which can result in this final tableau.
(Hint: what would the starting tableau have been?)

