Math 482: Linear Programming

Mikhail Lavrov

Homework \#4

Spring 2020

1. Write down the dual of the linear program below. (Do not solve).

$$
\begin{array}{cl}
\underset{x, y, z \in \mathbb{R}}{\operatorname{maximize}} & x+y+z \\
\text { subject to } & 2 x+y+2 z \leq 14 \\
& x+z \leq 8 \\
& 2 x+2 y-z \leq 18 \\
& x, y, z \geq 0 .
\end{array}
$$

2. Determine whether $(x, y, z)=(5,4,0)$ is the optimal solution to the linear program from problem 1, using complementary slackness.
3. Consider the problem below:

$$
\begin{array}{cl}
\underset{\mathbf{x} \in \mathbb{R}^{n}}{\operatorname{maximize}} & c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n} \\
\text { subject to } & a_{1} x_{1}+a_{2} x_{2}+\cdots+a_{n} x_{n} \leq 1, \\
& x_{1}, x_{2}, \ldots, x_{n} \geq 0 .
\end{array}
$$

Assume that $a_{1}, \ldots, a_{n}, c_{1}, \ldots, c_{n}>0$.
(a) Write down the dual program.
(b) Determine the optimal dual solution. (This will of course depend on a_{1}, \ldots, a_{n} and c_{1}, \ldots, c_{n}, but you should describe how.)
(c) Find a primal solution with the same objective value.
4. Use the simplex method to solve the linear program below. Then, use your final simplex tableau to find the optimal dual solution.

$$
\begin{array}{ll}
\underset{x, y \in \mathbb{R}}{\operatorname{maximize}} & x-y+z \\
\text { subject to } & x+2 y+z \leq 5 \\
& 2 x+y+z \leq 6 \\
& x, y, z \geq 0 .
\end{array}
$$

5. (Only 4-credit students need to do this problem.)

Consider the following linear program discussed in class:

$$
\begin{array}{ll}
\underset{\mathbf{x} \in \mathbb{R}^{d}}{\operatorname{maximize}} & x_{d} \\
\text { subject to } & 0.1 \leq x_{1} \leq 1-0.1, \\
& 0.1 x_{1} \leq x_{2} \leq 1-0.1 x_{1}, \\
& \ldots \\
& 0.1 x_{d-1} \leq x_{d} \leq 1-0.1 x_{d-1}, \\
& x_{1}, x_{2}, \ldots, x_{d} \geq 0 .
\end{array}
$$

Let \mathcal{P}_{d} be the "terrible trajectory" - the path between adjacent basic feasible solutions defined recursively as follows:

- \mathcal{P}_{1} starts at $(0,0,0)$ and increases x_{1} from its lower bound to its upper bound;
- \mathcal{P}_{k} follows \mathcal{P}_{k-1}, then increases x_{k} from its lower bound to its upper bound, then undoes the steps of \mathcal{P}_{k-1} in reverse order.

Show that the objective value increases with every step along \mathcal{P}_{d}. (Induct on d.)

