Math 482: Linear Programming		Mikhail Lavrov
	Homework \#7	
Spring 2020		Due Friday, April 3

1. Show that any $n \times n$ matrix following the pattern

$$
\left[\begin{array}{cccccc}
1 & 0 & 1 & \cdots & 0 & 1 \\
0 & 1 & 0 & \cdots & 1 & 0 \\
1 & 0 & 1 & \cdots & 0 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 1 & 0 & \cdots & 1 & 0 \\
1 & 0 & 1 & \cdots & 0 & 1
\end{array}\right]
$$

is totally unimodular: any submatrix obtained by taking any k rows and any k columns has determinant $-1,0$, or 1 .
(It may help to consider the cases $k \leq 2$ and $k \geq 3$ separately.)
2. Consider the bipartite graph with vertices $\left\{a_{1}, a_{2}, \ldots, a_{10}\right\}$ on one side, vertices $\left\{b_{1}, b_{2}, \ldots, b_{10}\right\}$ on the other side, and an edge between a_{i} and b_{j} if the product $i j$ is a multiple of 6 .
Find a largest matching in this graph, and show that it cannot be any larger by finding a vertex cover of the same size.
3. A bipartite graph (X, Y, E) has $|X|=|Y|=n$ and is r-regular: every vertex (in X or in Y) is the endpoint of exactly r edges.
(a) Determine $|E|$, the number of edges in the graph.
(b) Show that any vertex cover must contain at least n vertices.
(This implies that there is a matching of size n, which matches every vertex in X to a vertex in Y.)
4. Find examples of networks with the following properties:
(a) A network with a unique maximum flow, but multiple minimum cuts.
(b) A network with multiple maximum flows, but a unique minimum cut.
(c) A network with multiple maximum flows and multiple minimum cuts.

For each example, describe the maximum flow(s) and the minimum cut(s).
5. (Only 4-credit students need to do this problem.)

Consider a bipartite graph (X, Y, E) with $X=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$ and $Y=\left\{y_{1}, y_{2}, \ldots, y_{n}\right\}$. The biadjacency matrix of this graph is the $m \times n$ matrix A where $A_{i j}=1$ if there is an edge $\left(x_{i}, y_{j}\right) \in E$, and $A_{i j}=0$ otherwise.
If $m=n$ (so that the matrix A is square) and $\operatorname{det}(A)=-3$, show that the graph contains a matching of size n.

