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1 Motivation for the revised simplex method

In the previous lecture, we’ve worked out the following formulas for the entries in a simplex tableau,
once we’ve chosen the basis B:

xB xN

xB I Q p

−z 0T rT −z0
Where:

• p = A−1B b.

• Q = A−1B AN .

• rT = cN
T − cB

TA−1B AN .

We can write this as cN
T − cB

TQ if we already found Q, or as cN
T − uTAN in terms of

uT = cB
TA−1B .

• z0 = cB
TA−1B b.

We can write this as cB
Tp if we already found p, or as uTb in terms of uT = cB

TA−1B .

In the revised simplex method, we avoid recording, and row-reducing, the entire tableau. Instead,
we only remember some of the most important values we’ll need. The other values will be computed
as we go, using the formulas above.

Which values do we need to remember?

The most important is the matrix A−1B , because it shows up in every single formula. In theory, A−1B
is all we will need.

In practice, we will also remember the vector p = A−1B b, which tells us the values of the basic
variables at the current basic feasible solution. Even though we could find it with a single matrix-
vector multiplication, we keep it around, and update it by row reduction, because we know it will
be necessary in every pivot step.

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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2 The revised simplex method algorithm

So here’s how we perform a step of the revised simplex method. Remember: at each step, we know
only A−1B , as well as p = A−1B b. (Also, implicitly, we know B and N : we remember which variables
are basic, and which variables are not basic.)

2.1 Pricing

Pricing refers to the step of the simplex method where we determine the entering variable.

When we had the entire tableau in front of us, this step was easy: just look for a reduced cost with
the right sign (positive if we’re maximizing, negative if we’re minimizing) and pick that variable.
When we don’t have the reduced cost vector rT in front of us, that’s harder.

Although we have a formula for rT using values we already know, we don’t want to use it directly.
We want to minimize the work we have to do!

Therefore, we will go through the nonbasic variables in N , one at a time. For each nonbasic variable
xj , to decide if it’s a valid entering variable, we compute its reduced cost rj . Ideally, we use Bland’s
rule for pivoting: we pick the first nonbasic variable we can to be the entering variable. This means
that we can stop as soon as we find the first reduced cost which has the right sign. (If we had a
different way to choose the entering variable, such as picking the one with highest reduced cost,
then we’d have to compute all of rT.)

How do we compute rj? We have a formula:

rj = cj − cB
TA−1B Aj .

Choosing the right order of operations is important here. We can begin evaluating this formula by
multiplying either cB

T and A−1B , or A−1B and Aj . This seems like a minor detail, but:

• If we find A−1B Aj first, that’s a matrix-vector multiplication we must do for every single rj .
We’d like to avoid that.

• The product cB
TA−1B , which we gave the name uT, does not depend on which variable we’re

looking at. So we can compute it once at the beginning of the pricing step. Then, we can use
the formula rj = cj − uTAj , and this only requires multiplying together two vectors.

(For the computer scientists in the room: this is the difference between an O(n2) computation for
every reduced cost rj in the first case, and an O(n) computation with a one-time O(n2) setup cost
in the second case. If there are many nonbasic variables, the difference adds up!)

2.2 Column generation

Once we choose the entering variable xj , our next step is to compute xj ’s column of the simplex
tableau.

Again, we want to be as lazy as possible. We have a formula Q = A−1B AN for computing the entire
simplex tableau (the nonbasic portion of it, that is). But we only need xj ’s column of Q. This
is

Qj =
(
A−1B AN

)
j

= A−1B Aj .
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(Yes, that’s the multiplication we avoided doing in the previous step. We’re going to do it now,
but only one time: for the variable xj that turned out to be the entering variable.)

2.3 Pivoting

We know the entering variable xj , now it’s time to choose the leaving variable. We already have all
the inputs we need to make this decision: we know xj ’s column Qj , and we know the right-hand
side column p.

As usual, our first step is to make a shortlist of possible leaving variables: from the basic variables
B, we pick out those variables with a positive entry in Qj . That is, we consider the ith basic variable
as a possibility only if Qij > 0.

Among this shortlist, we settle things by computing ratios. For the ith basic variable, the ratio is
pj/Qij . The basic variable on the shortlist with the smallest ratio is our leaving variable.

2.4 Updating A−1B and p

The preceding steps have told us to go from the previous basis B to a new basis B′ (removing some
variable xi and adding some variable xj). Now, we need to know how to compute A−1B′ and update
p to A−1B′ b.

The rule for how to do this is simple:

The same row operations that we do to go from the old simplex tableau to the new
one will turn A−1B to A−1B′ .

This seems a little bit too convenient. How do we know this will work?

Recall that we can think of A−1B as a summary of all the row operations that we did to our initial
system of equations:

Ax = b  A−1B Ax = A−1B b.

When we perform one step of the simplex method and go from basis B to B′, we perform some
extra row operations, summarized by some matrix M . So we’ve ended up at

Ax = b  A−1B Ax = A−1B b  MA−1B Ax = MA−1B b.

But we also know that the matrix that puts the system of equations in row-reduced form for the
basis B′ is just A−1B′ . So we’ve also ended up at

Ax = b  A−1B′ Ax = A−1B′ b.

These are just two ways of writing down the same final result, so they must be equal, and there-
fore MA−1B = A−1B′ . That’s just another way of saying that if we take the extra row operations
represented by M , and apply them to A−1B , we get A−1B′ .

There’s a convenient way to represent this in a “mini-tableau” form. After we’ve determined
our entering variable xj , we can write down a smaller simplex tableau which only consists of the
following information:

A−1B Qj p
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We can then row-reduce this mini-tableau. If the ith basic variable is replaced by xj , then we divide
the ith row by Qij , and then row-reduce to set all other entries of the xj column to 0. This will
have the side effect of updating A−1B and p for the new basis.

3 An example

Consider the linear program

maximize
x1,x2,x3,x4

x1 + x2 + x3 + 2x4

subject to 3x1 − x2 + 4x3 − x4 ≤ 4

2x2 + x4 ≤ 5

x1, x2, x3, x4 ≥ 0

or in equational form:

maximize
x1,x2,x3,x4,s1,s2

x1 + x2 + x3 + 2x4

subject to 3x1 − x2 + 4x3 − x4 + s1 = 4

2x2 + x4 + s2 = 5

x1, x2, x3, x4 ≥ 0.

3.1 Initialization

Our initial basis is B = (s1, s2) with

A−1B =

[
1 0
0 1

]
and p =

[
4
5

]
.

This is how things always work out when x = 0 is a feasible solution, and the slack variables can
be chosen as the initial basis. If that didn’t happen, then we’d have to combine today’s method
with the two-phase simplex method.

3.2 Step 1

We begin by computing

uT = cB
TA−1B =

[
0 0

] [1 0
0 1

]
=

[
0 0

]
.

Since this is just the zero vector, there’s not much work to do: the formula rj = cj−uTAj simplifies
to rj = cj . Before we’ve done any row reduction, the reduced costs are just the initial costs!

The very first nonbasic variable x1 has a reduced cost of 1. We’re maximizing, so it’s a valid
entering variable. The x1 column of the tableau is computed by the formula Qj = A−1B Aj . Right
now, A−1B is the identity matrix, and we just get (3, 0): x1’s column in the original matrix.

We write down the mini-tableau below on the left:

B A−1B x1 p

s1
s2

[
1 0
0 1

] [
3
0

] [
4
5

]
 

B A−1B x1 p

x1
s2

[
1/3 0
0 1

] [
1
0

] [
4/3
5

]
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We pivot as in the ordinary simplex method; s1 leaves the basis, and we row-reduce to get the
tableau on the right.

3.3 Step 2

We begin by computing

uT = cB
TA−1B =

[
1 0

] [1/3 0
0 1

]
=

[
1/3 0

]
.

Apply the formula rj = cj −uTAj to find the reduced costs, one at a time. The reduced cost of x2
is

1−
[
1/3 0

] [
−1 2

]
=

4

3
> 0,

so x2 can enter the basis. Now we compute x2’s column in the tableau: it is

A−1B A2 =

[
1/3 0
0 1

] [
−1
2

]
=

[
−1/3

2

]
.

We write down the mini-tableau on the left below:

B A−1B x2 p

x1
s2

[
1/3 0
0 1

] [
−1/3

2

] [
4/3
5

]
 

B A−1B x2 p

x1
x2

[
1/3 1/6
0 1/2

] [
0
1

] [
13/6
5/2

]
Only s2 can leave the basis, so we row-reduce to replace it by x2. We get the tableau on the
right.

3.4 Step 3

We begin by computing

uT = cB
TA−1B =

[
1 1

] [1/3 1/6
0 1/2

]
=

[
1/3 2/3

]
.

Apply the formula rj = cj−uTAj to find the reduced costs, one at a time. For x3, we get a reduced
cost of

1−
[
1/3 2/3

] [4
0

]
= −1

3
< 0,

so x3 is not a valid entering variable. For x4, we get a reduced cost of

2−
[
1/3 2/3

] [−1
1

]
=

5

3
> 0,

so x4 is a valid entering variable. Now we compute x4’s column in the tableau: it is

A−1B A4 =

[
1/3 1/6
0 1/2

] [
−1
1

]
=

[
−1/6
1/2

]
.

We write down the mini-tableau on the left below; x4 is forced to replace x2, since x1’s coefficient
is negative, and we row-reduce to get the tableau on the right.

B A−1B x4 p

x1
x2

[
1/3 1/6
0 1/2

] [
−1/6
1/2

] [
13/6
5/2

]
 

B A−1B x4 p

x1
x4

[
1/3 1/3
0 1

] [
0
1

] [
3
5

]
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3.5 Step 4

We begin by computing

uT = cB
TA−1B =

[
1 2

] [1/3 1/3
0 1

]
=

[
1/3 7/3

]
.

We could compute the reduced costs one at a time here, but it will turn out that this is the last
step. So let’s compute all of them by the formula

rT = cN
T − uTAN .

We get [
1 1 0 0

]
−
[
1/3 7/3

] [−1 4 1 0
2 0 0 1

]
=

[
−10/3 −1/3 −1/3 −7/3

]
.

All reduced costs are negative, so the current basic feasible solution is optimal.

We have p = (3, 5) which records the values of the basic variables x1 and x4. This tells us that the
optimal solution is

(x1, x2, x3, x4) = (3, 0, 0, 5).
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