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0 Rows and columns notation

Previously, if A is an m× n matrix, we denoted the columns of A as A1, A2, . . . , An.

Today, we’ll also need to refer to the rows of A. So let’s call those aT1 ,a
T
2 , . . . ,a

T
m.

1 The statement of complementary slackness

Let’s consider once again the primal-dual pair

(P)


maximize

x∈Rn
cTx

subject to Ax ≤ b

x ≥ 0

(D)


minimize

u∈Rm
uTb

subject to uTA ≥ cT

u ≥ 0

We can prove weak duality for this pair in a quick line of algebra: if x is primal feasible and u is
dual feasible, then

Ax ≤ b,uT ≥ 0T =⇒ uTAx ≤ uTb

uTA ≥ cT,x ≥ 0 =⇒ uTAx ≥ cTx.

From cTx ≤ uTAx and uTAx ≤ uTb, we deduce cTx ≤ uTb.

Now suppose that x and u are primal and dual optimal, respectively. Strong duality, which we
haven’t proved yet, assures us that in this case, cTx = uTb. And based on the proof above, we
know a bit more: that

cTx = uTAx = uTb

for such a pair.

This lets us get a bit more information out. Let’s first focus on the second equation: uTAx = uTb.
We can rearrange this to say that

uT(b−Ax) = 0 ⇐⇒
m∑
i=1

ui(bi − aTi x) = 0.

Here, the quantity bi − aTi x has an interpretation: since the ith constraint in (P) is that aTi x ≤ bi,
it’s the amount of slack in that constraint. We know that both ui and bi−aTi x are nonnegative: the
first, because u ≥ 0, and the second, because aTi x ≤ bi. This means that their product ui(bi−aTi x)
is nonnegative.

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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The sum of a bunch of nonnegative things can only be 0 in one way: if all of them are 0. So we
know that for each i, either bi − aTi x = 0 or ui = 0.

A similar thing happens for the first equation, cTx = uTAx, which we can rearrange to

(uTA− cT)x = 0 ⇐⇒
n∑

i=1

(uTAi − ci)xi.

Here, uTAi − ci is the amount of slack in the ith constraint of (D): uTAi ≥ ci. So that factor
is also nonnegative. By the same reasoning as earlier, the sum can only be 0 if for each i, either
uTAi − ci = 0 or xi = 0.

In summary, we have a result called complementary slackness:

Theorem 1.1 (Complementary slackness). Let x be a primal optimal solution and let u be a dual
optimal solution. Then:

• For i = 1, 2, . . . ,m, either x satisfies the ith constraint of (P) with equality, or ui = 0.

• For i = 1, 2, . . . , n, either xi = 0, or u satisfies the ith constraint of (D) with equality.

We say that a ≤ or ≥ constraint is tight if equality holds, and slack otherwise. Hence the name
“complementary slackness”. If we pair the constraint aTi x ≤ bi with the nonnegativity constraint
ui ≥ 0, or the nonnegativity constraint xi ≥ 0 with the constraint uTAi ≥ ci, then at most one
of the constraints in each pair is slack.

We proved complementary slackness for one specific form of duality: linear programs in the form
that (P) and (D) above have. But we can do the same thing with other types of constraints.
Complementary slackness holds for all of them, even if it’s not always useful: for a = constraint
in the primal or dual, the constraint is always tight and we learn nothing about the corresponding
variable in the other linear program.

We can actually say slightly more.

Theorem 1.2. Let x be a primal feasible solution and let u be a dual feasible solution such that
complementary slackness holds between x and u. Then x and u are primal optimal and dual
optimal, respectively.

Proof. The first form of complementary slackness is equivalent to saying that uT(Ax − b) = 0,
which we can rewrite as uTAx = uTb. The second form of complementary slackness is equivalent
to saying that (cT − uTA)x = 0, which we can rewrite as uTAx = cTx. Therefore by transitivity
cTx = uTb.

This proves optimality of both x and u. The value uTb is an upper bound for all primal objective
values, so because cTx reaches that bound, x is optimal. Similarly, the value cTx is a lower bound
for all dual objective values, so because uTb reaches that bound, u is optimal.

The intuition behind complementary slackness is that the dual variable ui measures how useful
the constraint aTi x ≤ bi is in restricting the objective function of (P) from growing. (After all,
multiply that constraint by weight ui before adding it to other things to get an upper bound on
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the objective function.) If the ith constraint is slack at the optimal solution (that is, if aTi x < bi
when x is optimal), then that constraint is not at all useful, and so we must have ui = 0.

A similar interpretation works with the roles of the primal and dual reversed.

2 Applications and an example

We can use complementary slackness to do two things:

• Go from the optimal primal solution to the optimal dual solution, and vice versa. This will
become more and more useful as we learn new uses for duality.

• Verify that a solution is optimal, by checking if there’s a dual solution that goes with it.

For example, suppose that we are given the linear program

maximize
x1,x2,x3∈R

3x1 + 2x3

subject to x1 + x2 + x3 ≤ 6

2x1 − x2 + x3 ≤ 3

3x1 + x2 − x3 ≤ 3

x1, x2, x3 ≥ 0

Your friend used Microsoft Excel to determine that (x1, x2, x3) = (0, 1.5, 4.5) is optimal, but you
don’t trust Microsoft products, so you’d like to verify this. You also think that there could be other
optimal solutions, and you want to find all of them.

A quick check to begin with is that x = (0, 1.5, 4.5) is feasible. Indeed it is: all three components
are nonnegative, and all three equations are satisfied. (If this weren’t true, nothing else we did after
would be meaningful; also, if x weren’t feasible, it would definitely not be optimal either.)

After that, our first step is to find the dual:

minimize
u1,u2,u3∈R

6u1 + 3u2 + 3u3

subject to u1 + 2u2 + 3u3 ≥ 3

u1 − u2 + u3 ≥ 0

u1 + u2 − u3 ≥ 2

u1, u2, u3 ≥ 0

Now we check what complementary slackness tells us.

The primal solution (0, 1.5, 4.5) has x1+x2+x3 = 6 and 2x1−x2+x3 = 3, but 3x1+x2−x3 = −3 < 3,
so the first two constraints are tight, and the third is slack. This tells us that u3 = 0, while u1 and
u2 could be zero or nonzero.

Since x2 > 0 and x3 > 0, complementary slackness demands that the second and third dual
constraints should be tight: u1− u2 + u3 = 0 and u1 + u2− u3 = 2. It does not say anything about
the first constraint.
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Putting this together, we get 
u1 − u2 = 0

u1 + u2 = 2

u3 = 0

which has the unique solution (u1, u2, u3) = (1, 1, 0).

A final important check is that this satisfies the dual feasibility conditions. All three variables are
nonnegative, so that’s fine. Checking the second and third dual constraints was baked into our
method, but we haven’t used the first constraint yet, so we check that u1 + 2u2 + 3u3 = 1 + 2 + 0 =
3 ≥ 3. It is, so (1, 1, 0) is feasible.

Now, because we succeeded in satisfying complementary slackness, we know that (0, 1.5, 4.5) is
primal optimal and that (1, 1, 0) is dual optimal.

To see if there are any other primal optimal solutions, we use complementary slackness in the other
direction. At the point (1, 1, 0), all three dual constraints are tight, so none of the primal variables
are required to be 0. Since u1 = u2 > 0 and u3 = 0, we know that a feasible primal solution
(x1, x2, x3) is optimal if it satisfies x1 + x2 + x3 = 6 and 2x1 − x2 + x3 = 3.

We can parametrize the solutions to these two equations in terms of x1: points that satisfy x1 +
x2 + x3 = 6 and 2x1 − x2 + x3 = 3 are points of the form (x1, 1.5 + 0.5x1, 4.5 − 1.5x1). (If we set
x1 = 0, we get back the optimal solution we already knew.) But to ensure feasibility, we also need
to have

3x1 + x2 − x3 ≤ 3

x1 ≥ 0

x2 ≥ 0

x3 ≥ 0

=⇒


3x1 + (1.5 + 0.5x1)− (4.5− 1.5x1) ≤ 3

x1 ≥ 0

1.5 + 0.5x1 ≥ 0

4.5− 1.5x1 ≥ 0

=⇒


x1 ≤ 1.2

x1 ≥ 0

x1 ≥ −3

x1 ≤ 3

which means that the optimal primal solutions are all the points (t, 1.5 + 0.5t, 4.5 − 1.5t) for 0 ≤
t ≤ 1.2. If we want to avoid fractions, for example, we could set t = 1 and get (1, 2, 3).
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