
Math 482: Linear Programming1 Mikhail Lavrov

Lecture 20: Fourier–Motzkin Elimination

March 13, 2020 University of Illinois at Urbana-Champaign

1 The feasibility problem

A related question to the linear program optimization problems we’ve been solving is the existence
question: given A and b, is the set {x ∈ Rn : Ax ≤ b} nonempty? In other words, does there exist
a feasible solution to a linear program?

We already have methods to solve this problem. Right now, one reasonable approach is to use the
dual simplex method:

1. If necessary, put the constraints into equational form.

2. Find a basic solution (not necessarily a feasible one) by row reduction.

3. Invent an objective function that will give us a dual feasible tableau.

4. Use the dual simplex method to try to make the tableau primal feasible as well.

In fact, the feasibility problem is just as hard as the optimization problem. From strong duality, it
follows that the optimization problem

max{cTx : Ax ≤ b,x ≥ 0}

can be rewritten as the problem of finding a point inside

{(x,u) ∈ Rn+m : cTx = uTb, Ax ≤ b,uTA ≥ cT,x ≥ 0,u ≥ 0}.

So if we can solve any linear feasibility problem, we can solve any linear program as well.

2 Fourier–Motzkin elimination

There is another algorithm for solving the feasibility problem, which is very different from the
simplex method. Here, “very different” is kind of like “worse”, for large problems. But this
algorithm, called Fourier–Motzkin elimination, is still occasionally interesting. It’s simpler, so it’s
easier to prove things about. And for small problems, it might not even be that bad to use.

2.1 The algorithm

The idea of the algorithm is just this: first, we find a procedure to reduce an n-variable problem
to an equivalent (n − 1)-variable problem. (Equivalent means that one system of inequalities has
a feasible solution if and only if the other one does.) Then, repeat this procedure, eliminating
variables one at a time.

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html
https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html

Eventually, we’ll be left with a 1-variable problem, and these are easy to solve: just check if there
are any numbers between the greatest lower bound and the least upper bound. We will even be
able to trace back our steps, using a solution to the 1-variable problem to find solutions to the
2-variable, 3-variable, and eventually the original n-variable problem.

So how do we eliminate a variable? Well, let’s suppose we have variables x1, x2, . . . , xn, and we
want to eliminate xn.

Our first step is to solve for xn. For each inequality such as

a1x1 + a2x2 + · · ·+ anxn ≤ b

we will get one of the two inequalities

xn ≤
b− a1x1 − a2x2 − · · · − an−1xn−1

an
or xn ≥

b− a1x1 − a2x2 − · · · − an−1xn−1

an

depending on whether an > 0 or an < 0. (If an = 0, we’ll leave the inequality alone, since it doesn’t
involve xn to begin with.)

We’ll end up with a collection of lower and upper bounds:

xn ≥ L1, xn ≥ L2, . . . , xn ≥ Lk xn ≤ U1, xn ≤ U2, . . . , xn ≤ Um.

Here, each Li and Uj is an expression in the n− 1 variables x1, x2, . . . , xn−1.

It’s possible to choose a value of xn that satisfies all these bounds if and only if

max{L1, L2, . . . , Lk} ≤ min{U1, U2, . . . , Um}

because thern there’s something in between all the lower bounds and all the upper bounds. Unfor-
tunately, we can’t just write down this single equation, because the lower and upper bounds are all
in terms of unknown values x1, . . . , xn−1, so we can’t tell which ones are larger or smaller. So we
compromize by writing down k ·m inequalities:

L1 ≤ U1 L1 ≤ U2 · · · L1 ≤ Um

L2 ≤ U1 L2 ≤ U2 · · · L2 ≤ Um
...

...
. . .

...
Lk ≤ U1 Lk ≤ U2 · · · Lk ≤ Um

If an xn exists that satisfies all the constraints, then for every i and j, Li ≤ xm ≤ Uj , so all of these
inequalities hold. Conversely, if all of these inequalities hold, then the max-min inequality holds as
well, and we can choose xn between max{L1, . . . , Lk} and min{U1, . . . , Um}.

This results in our new system in only n − 1 variables. It consist of the k ·m inequalities above,
plus any of the original inequalities which didn’t involve xn in them to begin with.

2

2.2 Example

Suppose that we have a system of inequalities
x− y ≥ −3

x + 2y ≥ 4

x + y ≤ 7

x, y ≥ 0

We begin by eliminating y. First, we solve for y in each inequality

x− y ≥ −3 =⇒ y ≤ x + 3

x + 2y ≥ 4 =⇒ y ≥ 2− 1
2x

x + y ≤ 7 =⇒ y ≤ 7− x

y ≥ 0

x ≥ 0

Next, we pair up the two lower bounds on y with the two upper bounds. This gives us four
inequalities on x, together with a fifth one which is just x ≥ 0. These inequalities can all be
simplified into lower or upper bounds on x:

2− 1
2x ≤ 7− x

2− 1
2x ≤ x + 3

0 ≤ 7− x

0 ≤ x + 3

x ≥ 0

=⇒



x ≤ 10

x ≥ −2
3

x ≥ 7

x ≥ −3

x ≥ 0

Taking the greatest lower bound and the least upper bound, we know that a solution exists for any
x ∈ [0, 7].

To find a value of y, we work backwards. Say we take x = 2. Then the inequalities on y be-
come 

y ≤ x + 3 =⇒ y ≤ 5

y ≥ 2− 1
2x =⇒ y ≥ 1

y ≤ 7− x =⇒ y ≤ 5

y ≥ 0

So when x = 2, we can pick any y ∈ [1, 5]; for example, y = 3 gives the feasible solution (2, 3).

2.3 Complexity

The downside of this method is that, in typical cases, the number of inequalities grows very quickly.
For instance, here’s one possible way that Fourier–Motzkin elimination can go:

8 inequalities in x1, x2, x3, x4 =⇒ 4 lower and 4 upper bounds on x4

=⇒ 4× 4 = 16 inequalities in x1, x2, x3

3

=⇒ 8 lower and 8 upper bounds on x3

=⇒ 8× 8 = 64 inequalities in x1, x2

=⇒ 32 lower and 32 upper bounds on x2

=⇒ 32× 32 = 1024 inequalities in x1

The above is worst-case behavior: the types of bounds are split exactly in half every time. But
we expect roughly half of each type of bound, so this is not too far off from typical behavior,
either.

If we started with just 8 inequalities in n variables, then this pattern would continue to give us
22

k+2 inequalities in n − k variables all the way up until we get 22
n−1+2 inequalities in 1 variable

on the very last step. This is worse than exponential: this is doubly exponential.

3 Farkas’s lemma

We can slightly modify the variable elimination procedure we used in Fourier–Motzkin elimination.
Let’s assume that all our inequalities are ≤ inequalities, for consistency. Then, in the step where
we want to eliminate the variable xn:

• Instead of solving for xn in each inequality, divide each inequality where xn appears by |an|,
the absolute value of xn’s coefficient. The result will have xn either with a coefficient of 1
(corresponding to an upper bound) or −1 (corresponding to a lower bound).

• Instead of combining the lower and upper bounds, we add every +xn inequality to every −xn
inequality. This gives us inequalities without xn in them.

The inequalities we get this way will be the same ones, just in a different form. However, it is
more straightforward to see that every inequality we get is a linear combination of the original
inequalities.

Let’s rewrite our previous example in this way, and annotate it so that we see how each inequality
is obtained. Here is the “eliminate y” step:

(a) −x + y ≤ 3
(b) −x− 2y ≤ −4
(c) x + y ≤ 7
(d) −x ≤ 0
(e) −y ≤ 0

(a) −x + y ≤ 3
(c) x + y ≤ 7
1
2(b) −1

2x− y ≤ −2
(e) −y ≤ 0
(d) −x ≤ 0

(a) + 1
2(b) −3

2x ≤ 1
(a) + (e) −x ≤ 3
(c) + 1

2(b) 1
2x ≤ 5

(c) + (e) x ≤ 7
(d) −x ≤ 0

Then, we can eliminate x in the same way, getting many inequalities with no variables in them at
all:

(a) + 1
2(b) −3

2x ≤ 1
(a) + (e) −x ≤ 3
1
2(b) + (c) 1

2x ≤ 5
(c) + (e) x ≤ 7

(d) −x ≤ 0

(b) + 2(c) x ≤ 10
(c) + (e) x ≤ 7

2
3(a) + 1

3(b) −x ≤ 2
3

(a) + (e) −x ≤ 3
(d) −x ≤ 0

2
3(a) + 4

3(b) + 2(c) 0 ≤ 32
3

(a) + (b) + 2(c) + (e) 0 ≤ 13
(b) + 2(c) + (d) 0 ≤ 10

2
3(a) + 1

3(b) + (c) + (e) 0 ≤ 23
3

(a) + (c) + 2(e) 0 ≤ 10
(c) + (d) + (e) 0 ≤ 7

4

In this particular example, we gain nothing new from doing this.

However, imagine, that we started with a different system of equations which actually had no
feasible solution. For example, change equation (c) from x+y ≤ 7 to x+y ≤ 1. Then we’d still get
the combination (b) + 2(c) + (d) at the end, but instead of saying 0 ≤ 10, it would say 0 ≤ −2. In
other words, we’d have deduced a contradiction as a combination of our starting inequalities.

This is very convenient for obtaining a short proof that the system of equations has no feasible solu-
tion, rather than having to say something like “we tried to find a solution and we couldn’t”.

The theoretical principle that any system of inequalities either has a solution or a short proof of
non-existence is known as Farkas’s lemma:

Theorem 3.1 (Farkas’s lemma). For any system of inequalities Ax ≤ b, either there exists a
feasible solution x, or we can take a linear combination of the inequalities to derive a contradiction:
there exists a vector u ≥ 0 such that uTA = 0T but uTb < 0.

(The existence of u is the same as being able to derive a contradiction: left-multiplying Ax ≤ b by
uT, we deduce 0Tx < 0, or 0 < 0.)

Proof. Fourier–Motzkin elimination always gives us either a feasible solution x or the vector u.

Farkas’s lemma is important because it is the equivalent of strong duality for the feasibility problem:
the system “uTA = 0T and uTb < 0 and u ≥ 0” is a dual feasibility problem to the primal feasibility
problem “Ax ≤ b”. We could have used Farkas’s lemma to prove strong duality for linear programs,
without relying on the correctness of the simplex method to get there.

5

	The feasibility problem
	Fourier–Motzkin elimination
	The algorithm
	Example
	Complexity

	Farkas's lemma

