Math 482: Linear Programming’ Mikhail Lavrov

Lecture 21: The Bipartite Matching Problem
March 25, 2020 University of 1llinois at Urbana-Champaign

1 Bipartite matching

1.1 Definitions
Consider the following example problems:

e You have n employees and m jobs for them. Each employee is qualified to do some, but not
all of the jobs. You want to assign employees to jobs.

e A taxi company has a fleet of m taxis; n people request a taxi. Each taxi can only be used for
some of the requests, based on proximity. You want to assign a taxi to pick up each person.

e A cloud computing service must distribute n tasks to m servers. Each task can only be done
on a subset of the servers, depending on memory available, processor speed, and maybe weird
hardware requirements.

All of these are special cases of the bipartite matching problem. In general, to abstract away the
details of taxis, jobs, or servers, we call each object in our problem a wvertex. Vertices come in two
types (that’s what makes the problem “bipartite”).

There is a relation between some vertices of the first type and some vertices of the second type:
employees are qualified for jobs, taxis are close to customers, computing tasks can be done on
servers. Whenever this relation holds—whatever it is—we connect the two vertices by an edge. We
say that two vertices are adjacent or neighbors if there is an edge between them; the two vertices
an edge joins are called its endpoints.

The abstract structure we consider is called a bipartite graph. Formally, a bipartite graph is a triple
(X,Y,E) where X and Y are sets of vertices (of two types) and E is a set of edges: F consists
of some of the ordered pairs (v, w) where v € X and w € Y. We often represent these graphs by
diagrams such as the one below: vertices are represented by points, and edges by lines joining the

A matching M in a bipartite graph is a subset of the edges that does not include any vertex (in X
or in Y) more than once. Our goal in a bipartite matching problem is to find a matching which is
as large as possible.

!This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/
courses/482-spring-2020.html

https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html
https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html

1.2 The bipartite matching linear program

We can describe the bipartite matching problem by a linear program. Let’s label the vertices by
numbers: X will have vertices {1,2,...,n}, and Y will have vertices {n+1,n+2,...,n+m}

Our linear program will consist of a nonnegative variable x;; for each edge (i,j7) € E. We will
interpret z;; = 1 as “edge (i,7) is part of M” and z;; = 0 as “edge (4, j) is not part of M”. Then
the size of M is just the sum of all the variables.

For each vertex, whether it’s in X or in Y, we have a constraint: at most one edge with that vertex
as an endpoint can be in M. So if we sum over the variables x;; for all such edges, we should get
at most 1. (In particular, each variable should be at most 1.)

Putting this together, we have a linear program. For example, suppose we have the following
bipartite graph:

Ju—
LAN]
LJeN]

e
Ule
e
-Je

The linear program we get is

maximize 14 + 16 + T25 + Tar + T34 + T35

subject to x14 + x16 <1
To5 + X7 <1

T34 + 235 < 1

Ti4 + X34 <1

T25 +a35 <1

x16 <1

xo7 <1

T14, T16, 25, T27, T34, T35 > 0
2 Totally unimodular matrices

2.1 Integer and fractional solutions

There is a potential problem with the linear program we wrote down. What if the optimal solution
to it satisfies the constraint x14 + 16 < 1 by setting 14 = z16 = %? This does not make any sense
as a matching: an edge can’t be “halfway in” the set M, we either use it or we don’t. It especially
does not make any sense in applications: a taxi can’t split into two half-taxis that drive in different
directions to pick up different passengers.

What we want to do is to add a constraint to our linear program saying that every variable is
an integer: either 0 or 1, and not % Unfortunately, in general, integer linear programs with this
constraint are very hard to solve: much harder than ordinary linear programs.

We will return to integer programming later on in this course. However, it turns out that the linear
program for the bipartite matching problem has an almost magical property: it will always have
an optimal solution with integer values for all the variables. So for now, we don’t have to worry
about integers and fractions: things will just work out for us.

The reason why this happens has to do with special kinds of matrices called totally unimodular
matrices.

2.2 Matrices with integer inverses

Recall that a basic solution to the system Ax = b for a basis B is given by xp = Aglb and xn = 0.
One way we can be certain that xz will only have integer entries in such a basic solution is if both
b and Agl have only integer entries.

For b, that’s something we can look for in the original linear program. How can we tell if Agl will
have integer entries?

Lemma 2.1. A square matriz M with integer entries has an inverse M~ also with integer entries
if and only if det(M) = £1.

Proof. On one hand, we have det(M)det(M~!) = det(I) = 1. If M and M~! are both integer
matrices, then they must have integer determinants. The only ways two integers can multiply
together to get 1are1-1=1and —1-—-1=1.

On the other hand, there is a formula for M ~! using adjugate matrices. In the 2 x 2 case, it’s

yl_a bt 1 d —b
c d det(M) |—c¢ a|’
For larger matrices, the formula is m times another matrix whose entries are themselves deter-
minants of some submatrices of M. The exact formula doesn’t matter too much. What matters is

that the formula exists, and the denominator in that formula is det(M). So if det(M) = %1, the
formula gives an integer answer. O

2.3 Totally unimodular matrices

In the case of a linear program, the condition is a bit more complicated to check, because we don’t
know which matrix we’ll be inverting in advance. So we can ask for the following:

Theorem 2.2. Given a linear program with feasible region {x € R™ : Ax < b,x > 0}, all the
basic feasible solutions will definitely be integers if b is an integer, and every square submatriz of
A (formed by taking all the entries in any k rows and any k columns of A) has determinant —1,
0, or 1.

Such a matrix A is called totally unimodular.
Proof. When we find the basic feasible solutions, we first add slack variables, turning Ax < b into

Ax + Is = b. Given a basis B, the basic solution is given by Aglb, but because some of the slack
variables can be basic, Ag is an n X n submatrix of the extended matrix [A 1]

When Ag has k columns from A and n — k columns from I, the columns from I can be used to
simplify det(Ap) to the determinant of a k x k matrix. For example:

1 500
1 50
2 6 10 1 5
det 370 0 = —det 2 ; (1) ——det[3 7]
4 8 0 1

This is done by expanding by minors along one of the n — k columns of Ag coming from I. Up to a
factor of +1, the determinant of Ag will be equal to the determinant of the k x k submatrix where
we take the k columns coming from A, and the rows which did not contain any of the 1’s from the
other n — k columns.

In a totally unimodular matrix, all such k& x k determinants will be —1, 0, or 1. Therefore the
determinant det(Ag) will always be —1, 0, or 1.

If the determinant is 0, then Ag is not invertible. We don’t need to worry about this case: it
happens when B is not a valid basis, and does not result in a basic feasible solution at all.

If the determinant is —1 or 1, then by Lemma 2.1, Agl will have integer entries, and therefore the
basic solution xg = Aglb, xpn = 0 will have integer entries. This is exactly what we wanted. [

In the next lecture, we will show that the matrix for the bipartite matching linear program is
totally unimodular. This will reassure us that solving the linear program will actually work to find
a bipartite matching.

	Bipartite matching
	Definitions
	The bipartite matching linear program

	Totally unimodular matrices
	Integer and fractional solutions
	Matrices with integer inverses
	Totally unimodular matrices

