
Math 482: Linear Programming1 Mikhail Lavrov

Lecture 23: Network Flows

March 30, 2020 University of Illinois at Urbana-Champaign

1 What is a network?

We want to go on to model a fancier kind of problem: problems where some materials need to be
transported from one location to another. (For example, imagine supplying water or electricity to
houses, or shipping raw materials to factories.)

In our abstract setup, a network is a pair (N,A) where:

• N is a set of nodes, representing locations in a network;

• A is a set of arcs, ordered pairs (i, j) where i, j ∈ N , representing a one-way connection from
i to j.

(Nodes and arcs are very similar to vertices and edges, and some people use the same terminology
for both, but we’ll stick to “nodes” and “arcs” to emphasize that arcs have a direction where edges
didn’t.)

For the first problem we’ll consider, the max-flow problem, we have a bit more information on top
of this. For every arc (i, j) there is a capacity cij : a nonnegative real number. There are two special
nodes: a source s and a sink t. Our goal is to transport as much stuff from s to t. (Later, we will
see how to generalize this model to other cases.)

We encode the problem with variables xij for every arc (i, j), representing the amount of flow from
i to j: the amount of stuff traveling from i to j along arc (i, j). These flows have to satisfy the
following conditions:

• Capacity constraints: xij ≤ cij for all arcs (i, j) ∈ A.

• Nonnegativity constraints: xij ≥ 0 for all (i, j) ∈ A.

• Flow conservation: for every node k ∈ N (except for s and t), the total flow going in is equal
to the total flow going out. That is,∑

i:(i,k)∈A

xik =
∑

j:(k,j)∈A

xkj .

We do not require flow conservation at the source s or the sink t. Instead, the difference∑
i:(i,t)∈A

xit −
∑

j:(t,j)∈A

xtj
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represents the net incoming flow at the sink t. This is called the value of the flow x. We would like
to maximize the value: to transport as much stuff to t as possible.

Similarly, at the source s, we can take the difference (but switching the two sums):∑
j:(s,j)∈A

xsj −
∑

i:(i,s)∈A

xis

and this represents the net outgoing flow at the source s. Because flow is conserved at every vertex
other than s and t, the net outgoing flow at s should be equal to the net incoming flow at t, so it’s
another way to express the value of x.

There’s a couple of ways we can simplify the setup for the problem, should we care to:

• We can assume that A consists of all the possible arcs, and just set cij = 0 whenever we don’t
actually want arc (i, j) to do anything. We probably don’t want to bother when drawing a
network, since it makes the drawing more complicated, but we can do it to make setting up
the linear program simpler.

• It never makes sense to have positive flow xis > 0 on an arc going into s, or positive flow
xtj > 0 on an arc leaving t. So we can assume that all of these arcs don’t exist, or have
capacity 0. This simplifies our expression for the value of x: it can be written as∑

j:(s,j)∈A

xsj or
∑

i:(i,t)∈A

xit.

2 Upper bounds on flows

We move on to the following question: how can we tell if a feasible flow (that is, an assignment to
the variables xij : (i, j) ∈ A that satisfies all constraints) is optimal?

Consider the first diagram below. Here, a label of x/y on an arc means that the capacity of that
arc is y, and x of it is used. (That is, an arc (i, j) is labeled by xij/cij .) Here, the value of the flow
7; we can guarantee that this is best possible, because the total capacity of edges leaving s is 7, so
at most 7 flow can leave s.
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Now consider the second diagram. Here, things are a bit more complicated. However, we can still
see a “bottleneck” in the flow if we think of splitting up the nodes into {s, b} and {a, t}. The total
flow going from {s, b} to {a, t} is 7 (which is still the value of the flow). This cannot be increased,
because all edges from s or b to a or t (namely, (s, a) and (b, t)) have the maximum flow possible,
and all edges going the other way (namely, (a, b)) have zero flow.

2



The generalization of this notion is a cut. A cut in a network is a partition of the node set N into
two sets, S and T , such that s ∈ S and t ∈ T . (Being a partition requires that S ∩ T = ∅ and
S ∪ T = N : each node is exactly one of the two sets S, T .)

The capacity of a cut (S, T ) is, informally, the maximum amount of flow that can move from S to
T . Formally, it is the sum ∑

i∈S

∑
j∈T

cij

(taking cij = 0 if (i, j) /∈ A). For example, in the second diagram above, the cut ({s, b}, {a, t}) has
capacity csa+cbt = 7, because (s, a) and (b, t) are the only two arcs going from {s, b} to {a, t}.

Low-capacity cuts are bottlenecks in the network: if we have a cut (S, T ) with capacity c, then no
more than c flow can be sent from s to t. This might make intuitive sense, but just in case, let’s
prove why this happens.

Theorem 2.1. If a cut (S, T ) has capacity c(S, T ), then no more than c(S, T ) flow can be sent
from s to t in the network.

Proof. Let x be a feasible flow in the network, and consider the sum

v(x) :=
∑
k∈S

 ∑
j:(k,j)∈A

xkj −
∑

i:(i,k)∈A

xik

 .

On one hand, flow conservation tells us that only the k = s term of this sum is allowed to be
nonzero. In fact, the k = s term of this sum is equal to the value of x, and therefore the whole sum
v(x) simplifies to the value of x.

Now rearrange this sum slightly differently. First, split it up:

v(x) =
∑
k∈S

∑
j:(k,j)∈A

xkj −
∑
k∈S

∑
i:(i,k)∈A

xik.

Now split up each of these sums further: in each sum ranging over all i or all j, consider i, j ∈ S
separately from i, j ∈ T . (To simplify notation, we’ll drop the requirement that (k, j) ∈ A or
(i, k) ∈ A: with the convention that the capacity of arcs not in A is 0, this doesn’t make a
difference.) We get:

v(x) =

∑
k∈S

∑
j∈S

xkj +
∑
k∈S

∑
j∈T

xkj

−(∑
k∈S

∑
i∈S

xik +
∑
k∈S

∑
i∈T

xik

)
.

The double sum over k ∈ S, j ∈ S cancels with the double sum over k ∈ S, i ∈ S, because those
two sums include the exact same terms, so we have

v(x) =
∑
k∈S

∑
j∈T

xkj −
∑
k∈S

∑
i∈T

xik.

Now we’re going to put an upper bound on v(x). For the first sum, we have xkj ≤ ckj in each term,
and so replacing xkj by ckj can only increase the result. For the second sum, we have xik ≥ 0 in
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each term, and we’re subtracting all of these terms, so replacing xik by 0 can also only increase the
result. Therefore

v(x) ≤
∑
k∈S

∑
j∈T

ckj −
∑
k∈S

∑
i∈T

0.

But this is precisely the definition (with slightly different summation variables) of the capacity
c(S, T ). Therefore v(x) ≤ c(S, T ), which is the inequality we wanted.

We can also see from this proof when v(x) will equal c(S, T ) exactly. This happens when xij = cij
for every arc (i, j) with i ∈ S, j ∈ T , and xij = 0 for every arc (i, j) with i ∈ T, j ∈ S.

In both of the examples earlier, we were able to find a cut whose capacity is equal to the value of
the flow. We can ask: does this always happen? Will every maximum flow have a cut to match
it?
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