
Math 482: Linear Programming1 Mikhail Lavrov

Lecture 24: The Max-Flow Min-Cut Theorem

April 1, 2020 University of Illinois at Urbana-Champaign

1 The dual of the max-flow linear problem

We’re working with a network (N,A) with a capacity cij ≥ 0 for every arc (i, j) ∈ A. Let’s assume
for simplicity that we’ve already “cleaned up” the network by making sure that there are no arcs
going into s or out of t with positive capacity (they’d be useless).

Last time, we found that the linear program for finding a maximum flow in a network is

maximize
x∈R|A|

∑
j:(s,j)∈A

xsj

subject to
∑

i:(i,k)∈A

xik −
∑

j:(k,j)∈A

xkj = 0 (k ∈ N, k 6= s, t)

xij ≤ cij (i, j) ∈ A

x ≥ 0

Now, it’s time to find the dual program.

We’ll have two types of dual variables: a dual variable uk for every node k ∈ N other than s or t
corresponding to flow conservation at k, and a dual variable yij for every arc (i, j) ∈ A corresponding
to the capacity constraint xij ≤ cij .

Most variables xij appear in the primal in three constraints: the flow conservation constraint for
i (with a coefficient of −1), the flow conservation constraint for j (with a coefficient of 1), and
the capacity constraint for arc (i, j) (with a coefficient of 1). This results in a dual constraint of
−ui + uj + yij ≥ 0.

There are two exceptional cases. Variables xsj (for arcs out of s) don’t have a flow conservation
constraint for s, so they only have uj + ysj on the left-hand side; also, xsj appears in the objective
function, so the right-hand side is 1. Similarly, variables xit (for arcs into t) don’t have a flow
conservation constraint for t, so they only have −ui + yit on the left-hand side.

Altogether, we get the linear program

minimize
u∈R|N|−2,y∈R|A|

∑
(i,j)∈A

cijyij

subject to uj + ysj ≥ 1 (xsj)

−ui + uj + yij ≥ 0 (xij , i 6= s, j 6= t)

−ui + yit ≥ 0 (xit)

y ≥ 0,u unrestricted

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html

1

https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html
https://faculty.math.illinois.edu/~mlavrov/courses/482-spring-2020.html

But this is just the beginning. We want to clean up this linear program to understand it bet-
ter.

If we move the u variables to the other side, the generic (i, j) constraints become yij ≥ ui − uj ;
the (s, j) constraints become ysj ≥ 1− uj , and the (i, t) constraints become yit ≥ ui. This almost
follows a universal pattern that works for every arc.

So let’s introduce two “fake” variables: a variable us that’s always 1, and a variable ut that’s always
0. Then for every arc (i, j), we get a constraint yij ≥ ui − uj , no matter what i and j are. Now we
have:

minimize
u∈R|N|,y∈R|A|

∑
(i,j)∈A

cijyij

subject to yij ≥ ui − uj (for all (i, j) ∈ A)

us = 1

ut = 0

y ≥ 0,u unrestricted

There’s one more thing we can do to simplify this linear program, though it requires adding a
not-strictly-speaking-linear constraint. There are two lower bounds on yij : it is at least ui − uj ,
and it is at least 0. Since we are minimizing a sum of yij ’s with nonnegative coefficients, we want
to make yij as small as possible. So it should be the bigger of these two lower bounds: we should
always have yij = max{ui − uj , 0}.

If we substitute that into the linear program, we can get a dual just in terms of u:

minimize
u∈R|N|

∑
(i,j)∈A

cij max{ui − uj , 0}

subject to us = 1

ut = 0

Although the variables ui are unrestricted, we can make some assumptions about their values. We
will never want to set a variable uk smaller than the smallest uj with an arc (k, j), or larger than
the largest ui with an arc (i, k). Since us and ut are fixed at 1 and 0, we want to put the other ui
somewhere between those, so we can assume that 0 ≤ ui ≤ 1 for all i.

If we assume that actually, every variable ui is either 0 or 1, then we can give this problem a
combinatorial interpretation. Let S = {i ∈ N : ui = 1} and let T = {i ∈ N : ui = 0}. Then
we must have s ∈ S and t ∈ T , and the objective function is just a sum of cij where i ∈ S and
j ∈ T . So (S, T) is a cut and we are minimizing its capacity: this linear program is a search for
the minimum cut.

2 The Max-flow min-cut theorem

This duality is halfway to proving the following big result:

Theorem 2.1. In any network, the value of a maximum flow is equal to the capacity of a minimum
cut.

2

Strong duality tells us that the max-flow linear program and the min-cut linear program have the
same optimal objective value.

However, to know that the min-cut linear program actually has a minimum cut as its optimal
solution, we’d need to know that the optimal solution is an integer.

To prove this, we will use the following formulation:

minimize
u∈R|N|,y∈R|A|

∑
(i,j)∈A

cijyij

subject to yij − ui + uj ≥ 0 (for all (i, j) ∈ A)

us = 1

ut = 0

y ≥ 0,u ≥ 0.

We’ve added the u ≥ 0 constraint to fit with our theorem about totally unimodular matrices—it
only dealt with nonnegative variables. That theorem actually works for all basic solutions, but
just to avoid dealing with the technicality, let’s assume u ≥ 0. This doesn’t change the optimal
solutions, because we know negative values of u will never help.

To understand the constraint matrix, let’s think about its columns, which correspond to variables
in the linear program.

• Each uk column has a 1 in the rows for edges going into k (that is, edges of the form (i, k)
and a −1 in the rows for edges going out of k (that is, edges of the form (k, j).)

• The us and ut columns also have a single 1 in the rows for the us = 1 and ut = 0 constraints,
respectively.

• Each yij column is almost entirely made of zeroes. It has a single 1, in the row for the (i, j)
edge’s constraint.

Now let’s think about the determinants of k × k submatrices.

As with the proof of total unimodularity for the bipartite matching problem, we can eliminate some
k × k matrices because they can be reduced to smaller cases. In particular, we can reduce to a
smaller submatrix whenever we have a row or column with only a single nonzero entry in it.

(Exception: a 1× 1 submatrix like this doesn’t reduce to anything smaller, but we can check that
all entries are −1, 0, or 1, so 1× 1 submatrices are all fine.)

This means that in cases that don’t reduce to smaller cases, our submatrix doesn’t use any of the
yij columns. It doesn’t use the us = 1 row or the ut = 0 row. And whenever the row for some
yij − ui + uj ≥ 0 constraint is used, both the columns ui and uj must appear.

But now, every single row of our submatrix M has two nonzero entries: a −1 and a 1. This means
that if we multiply M by the k-dimensional vector 1 = (1, 1, . . . , 1), we get M1 = 0. This means
that det(M) = 0, because M has a nontrivial null space.

Therefore all k × k submatrices have determinant −1, 0, or 1. This means that the constraint
matrix is totally unimodular. This means that the optimal solution to the min-cut linear program
actually represents a minimum cut. And this proves the max-flow min-cut theorem.

3

