Math 482: Linear Programming ${ }^{1}$	Mikhail Lavrov
Lecture 24: The Max-Flow Min-Cut Theorem	
April 1, 2020	University of Illinois at Urbana-Champaign

1 The dual of the max-flow linear problem

We're working with a network (N, A) with a capacity $c_{i j} \geq 0$ for every arc $(i, j) \in A$. Let's assume for simplicity that we've already "cleaned up" the network by making sure that there are no arcs going into s or out of t with positive capacity (they'd be useless).

Last time, we found that the linear program for finding a maximum flow in a network is

$$
\begin{aligned}
\underset{\mathbf{x} \in \mathbb{R}^{|A|}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad(k \in N, k \neq s, t) \\
& x_{i j} \leq c_{i j} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

Now, it's time to find the dual program.
We'll have two types of dual variables: a dual variable u_{k} for every node $k \in N$ other than s or t corresponding to flow conservation at k, and a dual variable $y_{i j}$ for every arc $(i, j) \in A$ corresponding to the capacity constraint $x_{i j} \leq c_{i j}$.
Most variables $x_{i j}$ appear in the primal in three constraints: the flow conservation constraint for i (with a coefficient of -1), the flow conservation constraint for j (with a coefficient of 1), and the capacity constraint for arc (i, j) (with a coefficient of 1). This results in a dual constraint of $-u_{i}+u_{j}+y_{i j} \geq 0$.

There are two exceptional cases. Variables $x_{s j}$ (for arcs out of s) don't have a flow conservation constraint for s, so they only have $u_{j}+y_{s j}$ on the left-hand side; also, $x_{s j}$ appears in the objective function, so the right-hand side is 1 . Similarly, variables $x_{i t}$ (for arcs into t) don't have a flow conservation constraint for t, so they only have $-u_{i}+y_{i t}$ on the left-hand side.
Altogether, we get the linear program

$$
\begin{array}{llr}
\underset{\mathbf{u} \in \mathbb{R}^{|N|-2, \mathbf{y} \in \mathbb{R}^{|A|}}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} & \\
\text { subject to } & u_{j}+y_{s j} \geq 1 & \left(x_{s j}\right) \\
& -u_{i}+u_{j}+y_{i j} \geq 0 & \left(x_{i j}, i \neq s, j \neq t\right) \\
& -u_{i} \quad+y_{i t} \geq 0 & \left(x_{i t}\right) \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted } &
\end{array}
$$

[^0]But this is just the beginning. We want to clean up this linear program to understand it better.

If we move the u variables to the other side, the generic (i, j) constraints become $y_{i j} \geq u_{i}-u_{j}$; the (s, j) constraints become $y_{s j} \geq 1-u_{j}$, and the ($\left.i, t\right)$ constraints become $y_{i t} \geq u_{i}$. This almost follows a universal pattern that works for every arc.

So let's introduce two "fake" variables: a variable u_{s} that's always 1 , and a variable u_{t} that's always 0 . Then for every arc (i, j), we get a constraint $y_{i j} \geq u_{i}-u_{j}$, no matter what i and j are. Now we have:

$$
\begin{array}{lll}
\underset{\mathbf{u} \in \mathbb{R}^{|N|} \mid, \mathbf{y} \in \mathbb{R}^{|A|}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} & \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} & \\
& u_{s}=1 & \\
& u_{t}=0 & \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted } &
\end{array}
$$

There's one more thing we can do to simplify this linear program, though it requires adding a not-strictly-speaking-linear constraint. There are two lower bounds on $y_{i j}$: it is at least $u_{i}-u_{j}$, and it is at least 0 . Since we are minimizing a sum of $y_{i j}$'s with nonnegative coefficients, we want to make $y_{i j}$ as small as possible. So it should be the bigger of these two lower bounds: we should always have $y_{i j}=\max \left\{u_{i}-u_{j}, 0\right\}$.

If we substitute that into the linear program, we can get a dual just in terms of \mathbf{u} :

$$
\begin{array}{cl}
\underset{\mathbf{u} \in \mathbb{R}^{|N|}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \max \left\{u_{i}-u_{j}, 0\right\} \\
\text { subject to } & u_{s}=1 \\
& u_{t}=0
\end{array}
$$

Although the variables u_{i} are unrestricted, we can make some assumptions about their values. We will never want to set a variable u_{k} smaller than the smallest u_{j} with an arc (k, j), or larger than the largest u_{i} with an arc (i, k). Since u_{s} and u_{t} are fixed at 1 and 0 , we want to put the other u_{i} somewhere between those, so we can assume that $0 \leq u_{i} \leq 1$ for all i.

If we assume that actually, every variable u_{i} is either 0 or 1 , then we can give this problem a combinatorial interpretation. Let $S=\left\{i \in N: u_{i}=1\right\}$ and let $T=\left\{i \in N: u_{i}=0\right\}$. Then we must have $s \in S$ and $t \in T$, and the objective function is just a sum of $c_{i j}$ where $i \in S$ and $j \in T$. So (S, T) is a cut and we are minimizing its capacity: this linear program is a search for the minimum cut.

2 The Max-flow min-cut theorem

This duality is halfway to proving the following big result:

Theorem 2.1. In any network, the value of a maximum flow is equal to the capacity of a minimum cut.

Strong duality tells us that the max-flow linear program and the min-cut linear program have the same optimal objective value.

However, to know that the min-cut linear program actually has a minimum cut as its optimal solution, we'd need to know that the optimal solution is an integer.

To prove this, we will use the following formulation:

$$
\begin{array}{ll}
\underset{\mathbf{u} \in \mathbb{R}^{|N|} \mid \mathbf{y} \in \mathbb{R}^{|A|}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j}-u_{i}+u_{j} \geq 0 \quad(\text { for all }(i, j) \in A) \\
& u_{s}=1 \\
& u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \geq \mathbf{0} .
\end{array}
$$

We've added the $\mathbf{u} \geq \mathbf{0}$ constraint to fit with our theorem about totally unimodular matrices-it only dealt with nonnegative variables. That theorem actually works for all basic solutions, but just to avoid dealing with the technicality, let's assume $\mathbf{u} \geq \mathbf{0}$. This doesn't change the optimal solutions, because we know negative values of \mathbf{u} will never help.

To understand the constraint matrix, let's think about its columns, which correspond to variables in the linear program.

- Each u_{k} column has a 1 in the rows for edges going into k (that is, edges of the form (i, k) and $\mathrm{a}-1$ in the rows for edges going out of k (that is, edges of the form (k, j).)
- The u_{s} and u_{t} columns also have a single 1 in the rows for the $u_{s}=1$ and $u_{t}=0$ constraints, respectively.
- Each $y_{i j}$ column is almost entirely made of zeroes. It has a single 1 , in the row for the (i, j) edge's constraint.
Now let's think about the determinants of $k \times k$ submatrices.
As with the proof of total unimodularity for the bipartite matching problem, we can eliminate some $k \times k$ matrices because they can be reduced to smaller cases. In particular, we can reduce to a smaller submatrix whenever we have a row or column with only a single nonzero entry in it.
(Exception: a 1×1 submatrix like this doesn't reduce to anything smaller, but we can check that all entries are $-1,0$, or 1 , so 1×1 submatrices are all fine.)

This means that in cases that don't reduce to smaller cases, our submatrix doesn't use any of the $y_{i j}$ columns. It doesn't use the $u_{s}=1$ row or the $u_{t}=0$ row. And whenever the row for some $y_{i j}-u_{i}+u_{j} \geq 0$ constraint is used, both the columns u_{i} and u_{j} must appear.
But now, every single row of our submatrix M has two nonzero entries: a -1 and a 1 . This means that if we multiply M by the k-dimensional vector $\mathbf{1}=(1,1, \ldots, 1)$, we get $M \mathbf{1}=\mathbf{0}$. This means that $\operatorname{det}(M)=0$, because M has a nontrivial null space.

Therefore all $k \times k$ submatrices have determinant $-1,0$, or 1 . This means that the constraint matrix is totally unimodular. This means that the optimal solution to the min-cut linear program actually represents a minimum cut. And this proves the max-flow min-cut theorem.

[^0]: ${ }^{1}$ This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/ courses/482-spring-2020.html

