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Lecture 26: The Ford–Fulkerson Algorithm
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1 Residual graphs, augmenting paths, and minimum cuts

Consider the following network with a feasible flow:
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We want to find an augmenting path, so we construct a residual graph which places arcs along every
possible path that an augmenting path would take. Each arc in the residual graph is labeled with
its residual capacity: the maximum amount by which flow can be changed in that direction.
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Exploring, we find that from s, we can get to b or c. From c, we can only go to b again, which as
already possible; from b, we can also go to a. From a, we can return to s or get to t. We’ve found
a path from s to t. Two, actually: we can go s→ b→ a→ t or s→ c→ b→ a→ t in the residual
graph.

Let’s choose the second path, for no particular reason. (Either one would lead us to an optimal
solution.) In the actual network, this corresponds to the augmenting path

s
0/1−−→ c

3/3←−− b 1/3←−− a 1/4−−→ t

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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which we can modify by adding 1 to every forward edge, and subtracting 1 from every backward
edge:

s
1/1−−→ c

2/3←−− b 0/3←−− a 2/4−−→ t

The new, updated, network flow is
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Here’s the new part. Let’s also update the residual graph for this network flow: the new residual
graph is
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If we try to find a path from s to t in the new residual graph, we fail. From s, we can only go to b
directly. From b, a new path to c opens up (and nowhere else). From c, we can only go back to b,
which doesn’t help.

This seems disappointing, but actually it’s expected, and it’s what we want to see. Here’s why.

Theorem 1.1. Suppose that there is no path from s to t in the residual graph (for some feasible
flow x in some network). Then:

• The flow x is a maximum flow.

• Let S be the set of all nodes reachable from s in the residual graph (including s itself). Let
T be the set of all other nodes. Then (S, T ) is a minimum cut, and has capacity equal to the
value of x.

So, in the example above, the value of the most recent flow we found is 6. The nodes reachable
from s in the residual graph are {s, b, c}, giving us the cut with {s, b, c} on one side and {a, t} on
the other. The capacity of this cut is csa + cbt + cct = 2 + 1 + 3 = 6.
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2 Proof of Theorem 1.1

Things work out in the example above: since the capacity of the cut (S, T ) agrees with the value
of x, both are optimal.

Why is this true in general?

Three lectures ago, when we were proving that the capacity of a cut gives an upper bound on the
value of a flow, we showed the following:∑

j:(s,j)∈A

xsj −
∑

i:(i,s)∈A

xis =
∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij ≤
∑
i∈S

∑
j∈T

cij

On the left, we have (by definition) the value of the flow x. By some algebraic manipulation, we
showed that this is equal to the middle expression: the total flow crossing from S to T , minus the
total flow crossing from T back to S. This is upper bounded by the expression on the right (by
using xij ≤ cij on every term of the first sum, and xij ≥ 0 on every term of the middle sum), and
the expression on the right is just the capacity of the cut (S, T ).

Now let’s think about what happens in the special case where S is the set of all vertices reachable
from the source in the residual graph. This means that there can be no residual arc from any node
i ∈ S to any node j ∈ T .

There are two kinds of residual arcs.

• Forward residual arcs i→ j corresponding to arcs (i, j) with xij < cij .

If there are no such arcs from S to T , that means that for every i ∈ S and j ∈ T , we have
xij = cij .

• Backward residual arcs i← j corresponding to arcs (i, j) with xij > 0.

If there are no such arcs from S to T , that means that for every i ∈ T and j ∈ S, we have
xij = 0.

As a result, for this cut, instead of the inequality we get above, we have the equation∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij =
∑
i∈S

∑
j∈T

cij −
∑
i∈T

∑
j∈S

0 =
∑
i∈S

∑
j∈T

cij .

Therefore the value of the flow x is equal to the capacity of the cut (S, T ).

The optimality of both of the flow and the cut follows. We know the capacity of the cut (S, T ) is
an upper bound on the value of any flow; since x achieves that upper bound, it is a maximum flow
(no other flow can be better). Similarly, the value of x is a lower bound on the capacity of any cut:
since (S, T ) achieves that lower bound, it is a minimum cut.

3 The Ford–Fulkerson algorithm

This leads us to an algorithm for trying to find a maximum flow in a network without using linear
programming.
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Start at a feasible flow: for example, the flow x = 0. Then repeat the augmenting step we’ve
developed:

1. Construct the residual graph for x.

2. Attempt to find a path from s to t in the residual graph.

3. If a path exists, it gives us an augmenting path, which we use to improve x and go back to
step 1.

4. If no path exists, we use Theorem 1.1 to obtain a minimum cut whose capacity is equal to
the value of x. We know x is optimal, and the cut gives us a certificate of optimality.

As with the simplex algorithm, there is one more thing left to worry about. Ford–Fulkerson lets
us always keep getting a better flow, and only stops when we reach a maximum flow, but are we
guaranteed to actually reach it?

Unfortunately, as stated so far, there is no such guarantee in general. We can say that we’ll
eventually be done in cases where all the capacities cij are integers. In this case, at every step,
the value of the flow increases by at least 1, and so eventually it will reach

∑
j:(s,j)∈A csj , which

is an upper bound on the value of the maximum flow. Similarly, if all the capacities are rational
numbers, the flow always increases by at least 1

d , where d is the greatest common denominator of
all the capacities.

But this is a very bad upper bound. Consider the following example:
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The maximum flow here has value 2000, which can be reached in just 2 steps. But if we have poor
judgement, and alternate between the augmenting paths s → a → b → t and s → b ← a → t, we
increase the flow by 1 at each step, and only finish is 2000 steps.

Things are even worse if some capacities are irrational numbers. Then there is an example2 in which
a poor choice of augmenting paths means we never even get close to the maximum flow.

Fortunately, there is a simple rule to avoid this situation. If we always pick the shortest augmenting
path available at every step, then it can be shown that we’ll always reach the maximum flow after
at most n ·m steps (in a network with n nodes and m arcs). This refinement is called the Edmonds–
Karp algorithm.

2See the extremely long optional section at the end of these notes.
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4 Infinite loops in Ford–Fulkerson (very optional)

I get this example by way of the notes at http://jeffe.cs.illinois.edu/teaching/algorithms/
book/10-maxflow.pdf (pp. 335–336), which use an example from “The smallest networks on which
the Ford–Fulkerson maximum flow procedure may fail to terminate” by Uri Zwick. Feel free to
consult either of these sources, but I hope to develop the example in more detail here.

Consider the network
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where the capacity ϕ is the real number
√
5−1
2 ≈ 0.618. This value is chosen to satisfy ϕ2 = 1− ϕ.

The maximum flow in this network has value 21, but we’ll never get there: in fact, the value of the
flow will always be less than 5. So for the purposes of our augmenting paths, the arcs with capacity
10 might as well have infinite capacity; we’ll never use it all up anyway.

The augmenting paths we use have to be very carefully (badly) chosen to end up in a situation where
we keep repeating forever. Note, though, that we’re not being stupidly self-sabotaging: whenever
we choose an augmenting path, we do augment the flow along that path as much as we can.

The sequence of augmenting paths has a repeating pattern. There is an initial augmenting step
which is done once:

1. Augment along the path s→ b→ c→ t (shown on the left), getting a flow with a value of 1
(shown on the right). The bottleneck is the arc b→ c, which has a residual capacity of 1.
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From here, there is a sequence of four augmenting paths that repeat forever (steps 2–5 below).
That is, the paths we choose to augment by will repeat; the flow x will keep changing, and we’ll
augment by a smaller and smaller amount in each cycle.
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2. Augment along the path s → d → c ← b → a → t (shown on the left), getting a flow with a
value of 1 + ϕ (shown on the right). We are limited by the arc d → c, which has a residual
capacity of ϕ.
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3. Augment along the path s→ b→ c← d→ t (shown on the left), getting a flow with a value
of 1 + 2ϕ (shown on the right). We are limited by the forward arc b → c and the backward
arc d→ c, both with a residual capacity of ϕ.
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4. Augment along the path s → d → c ← b → a → t (shown on the left), increasing the value
by ϕ2 (which is equal to 1−ϕ) and getting a flow with a value of 1 + 2ϕ+ϕ2 (shown on the
right). We are limited by the arc b→ a, which has residual capacity 1− ϕ.
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5. Augment along the path s→ a← b→ c→ t (shown on the left), increasing the value by ϕ2

and getting a flow with a value of 1 + 2ϕ+ 2ϕ2 = 3 (shown on the right). We are limited by
the arc b→ c, which has residual capacity 1− ϕ = ϕ2.
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Let’s compare the network at the end of step 1 and the network at the end of step 5.

• In the network at the end of step 1, arcs b→ a, b→ c, and d→ c have residual capacities 1,
0, and ϕ, respectively.

• In the network at the end of step 5, arcs b → a, b → c, and d → c have residual capacities
1− ϕ, 0, and ϕ− ϕ2, respectively.

But that’s not the clearest way to write these residual capacities. Because ϕ2 = 1− ϕ, these
residual capacities can be written as ϕ2, 0, and ϕ3, respectively.

We see that after steps 2–5, all three residual capacities have multiplied by ϕ2.

This is the pattern that will continue in the next four steps. Steps 6–9 will be the same as steps
2–5, except that in every augmenting step, the amount we augment by will be multiplied by ϕ2.
(That is, we augmented by φ, φ, φ2, φ2 in steps 2, 3, 4, 5 and we will augment by φ3, φ3, φ4, φ4 in
step 6, 7, 8, 9.) In steps 10–13, the amount will be multiplied by ϕ2 again: we will augment by
φ5, φ5, φ6, φ6 in steps 10, 11, 12, 13. This pattern will continue forever.

I will repeat one more iteration (steps 6–9) to illustrate how the next infinitely many steps will go.
(Feel free to skip this if you think you get it.)

6. Augment along the path s → d → c ← b → a → t (shown on the left), getting a flow with a
value of 3 + ϕ3 (shown on the right). We are limited by the arc d→ c, which has a residual
capacity of ϕ− ϕ2 = ϕ3.
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7. Augment along the path s→ b→ c← d→ t (shown on the left), getting a flow with a value
of 3 + 2ϕ3 (shown on the right). We are limited by the arc b→ c, with residual capacity ϕ3.
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8. Augment along the path s → d → c ← b → a → t (shown on the left), increasing the value
by ϕ4 and getting a flow with a value of 3 + 2ϕ3 + ϕ4 (shown on the right). We are limited
by the arc b→ a, which has residual capacity 1− ϕ− ϕ3 = ϕ2 − ϕ3 = ϕ2(1− ϕ) = ϕ4.
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9. Augment along the path s→ a← b→ c→ t (shown on the left), increasing the value by ϕ4

and getting a flow with a value of 3 + 2ϕ3 + 2ϕ4 (shown on the right). We are limited by the
arc b→ c, which has residual capacity ϕ4.
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Say that this pattern keeps going forever. What will we get after infinitely many steps like this?
(How do we know that the value of the flow won’t get arbitrarily large?)

Steps 2–5 increased the flow by 2ϕ + 2ϕ2. Steps 6–9 increased it by 2ϕ3 + 2ϕ4. Steps 10–13 will
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increase it by 2ϕ5 + 2ϕ6. Since ϕ < 1, these increments get smaller and smaller in a geometric
progression.

We can compute the total using the formula for a geometric series: a + ar + ar2 + · · · = a
1−r . In

this case, the total value is

1 + 2ϕ+ 2ϕ2 + 2ϕ3 + 2ϕ4 + · · · = 1 +
2ϕ

1− ϕ
= 1 +

2φ

φ2
= 2 +

√
5 ≈ 4.236.

This is the limit of the procedure; at any step in this infinite loop, the value of the flow will be
slightly smaller than this.
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