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0 The plan

The simplex method can be roughly summarized as “go from one solution to another, improving
every time, until you reach the best solution”. We’ll get there in two steps.

Today, we will talk about how we go from one solution to another. We will only think about the
constraints of our linear program, and not even consider the objective function.

In the next lecture, we’ll go back and think about which steps bring us closer to our goal, and
which steps take us further away from it.

1 A quick review of linear algebra

A good chunk of your typical linear algebra class consists of solving systems of linear equations;
for example, {

3x + y = 6

x− y = −2

We can solve this problem by putting the entries into a matrix and row-reducing. (I mean, for a
problem this size, we probably shouldn’t bother, but whatever.)[

3 1 6
1 −1 −2

]
 

[
1 0 1
0 1 3

]
Read as equations again, the rows of the resulting matrix become “x = 1” and “y = 3”, telling us
the solution.

Things become more complicated if we have more variables than equations; in this case, the typical
thing to expect is a family of infinitely many solutions. Given the system{

3x + y + 5z = 6

x− y + 3z = −2

we can row-reduce again, and the result looks like this:[
3 1 5 6
1 −1 3 −2

]
 

[
1 0 2 1
0 1 −1 3

]
The x and y columns look “solved” but the z column looks like a bunch of random numbers, which
is typical.

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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We call x and y in this case the basic variables and z and any others like it the nonbasic vari-
ables.

We can get one solution to the system of equations just by setting all nonbasic variables to 0. In
this case, we can ignore the z column, and just get x = 1 and y = 3 as before. This is called the
basic solution. It is the nicest to describe in an infinite family of solutions: we could set z to any
value, and it would be almost as easy to find x and y.

In general, we can set the nonbasic variables to anything we like, and get a solution by finding what
the basic variables must be. But the nicest solution is the basic solution, which comes from setting
the nonbasic variables to 0.

Linear algebra classes don’t make a point of it, but choosing the first variables we can to be the
basic variables is just a convention. Instead, we could have made y and z the basic variables,
row-reducing to get [

3 1 5 6
1 −1 3 −2

]
 

[
1/2 1 0 7/2
1/2 0 1 1/2

]
This works just as well, but now our basic solution sets y = 7

2 and z = 1
2 (and the nonbasic variable

x to 0), and we get infinitely many other solutions by varying x.

2 Back to linear programming

The simplex method works on linear programs in equational form: the constraints are Ax = b with
x ≥ 0. That is, we have a perfectly ordinary system of linear equations, together with the added
constraint that all variables must be nonnegative.

There are still infinitely many feasible solutions, but on the first day, we saw a rule that cuts their
number down to a manageable amount:

Rule #1: At least one optimal solution is a vertex of the feasible region.2

The vertices of the feasible region are the points where we meet the boundaries of as many inequal-
ities as possible. If our only inequalities are “x1, x2, . . . , xn ≥ 0”, then the vertices are the points
where as many variables as possible are 0. If we’re solving the system of equations the way we did
earlier, we’d like to set all the nonbasic variables to achieve this. This tells us another rule:

Rule #2: All vertices of the feasible region are basic solutions of the system of linear
equations.

This gives a motivation to find as many basic solutions as possible.

Consider the following example: a linear program with constraints
x1 + x3 + 3x4 + x5 = 4

x2 + x4 + x5 = 3

x3 + x4 − x5 = 1

x1, x2, x3, x4, x5 ≥ 0.

2Terms and conditions apply. Void if the linear program doesn’t have an optimal solution. Also void if the feasible
region doesn’t have any vertices.
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Here,

A =

1 0 1 3 1
0 1 0 1 1
0 0 1 1 −1

 , b =

4
3
1

 .

It’s easy to start with basic variables x1, x2, x3: subtract the third row from the first. We get
x1 + 2x4 + 2x5 = 3

x2 + x4 + x5 = 3

x3 + x4 − x5 = 1

x1, x2, x3, x4, x5 ≥ 0.

and if we set x4 = x5 = 0, we can read off the basic variables: x1 = 3, x2 = 3, and x3 = 1.

There is special notation for this step. Let B = (1, 2, 3): the indices of the basic variable positions.
Write

AB =

1 0 1
0 1 0
0 0 1


for the submatrix of A where we take only the columns from B. Then the row reduction we did
can be summarized by the matrix multiplication A−1B Ax = A−1B b, or1 0 1

0 1 0
0 0 1

−1 1 0 1 3 1
0 1 0 1 1
0 0 1 1 −1

x =

1 0 1
0 1 0
0 0 1

−1 4
3
1


which simplifies, as expected, to 1 0 0 2 2

0 1 0 1 1
0 0 1 1 −1

x =

3
3
1

 .

The values of the basic variables are given by xB = A−1B b.

Let’s try this again with a different basis: B′ = (2, 3, 4). Here,

AB′ =

0 1 3
1 0 1
0 1 1

 , A−1B′ =

−1/2 1 1/2
−1/2 0 3/2

1/2 0 −1/2


and the new system of equations A−1B′ Ax = A−1B′ b simplifies to−1/2 1 0 0 0

−1/2 0 1 0 −2
1/2 0 0 1 1

x =

 3/2
−1/2

3/2

 .

The values of the basic variables are (x2, x3, x4) = xB′ = A−1B′ b = (32 ,−
1
2 ,

3
2).

There’s a problem. With B = (1, 2, 3), we got (x1, x2, x3, x4, x5) = (3, 3, 1, 0, 0), which does satisfy
x ≥ 0. With B′ = (2, 3, 4), we got (x1, x2, x3, x4, x5) = (0, 32 ,−

1
2 ,

3
2 , 0), which doesnt satisfy it.
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We don’t just want a basic solution. We want a basic feasible solution: a basic solution which also
satisfies the nonnegativity constraints.

The simplex method ensures this by a strategy called pivoting. The idea is that

1. We start with a basic feasible solution.

2. We modify it slightly by making one nonbasic variable enter the basis, and one basic variable
leave the basis.

3. We choose which variable leaves to avoid negative signs, so that we arrive at a new basic
feasible solution.

Since we need to start with a basic feasible solution, let’s return to B = (1, 2, 3), with basic solution
x = (3, 3, 1, 0, 0). For no particular reason, let’s pick x5 to enter the basis. Then x4 remains 0, so
we can ignore the x4 column, but as x5 changes, the other variables change in terms of x2:

x1 + 2x5 = 3

x2 + x5 = 3

x3 − x5 = 1

=⇒


x1 = 3− 2x5

x2 = 3− x5

x3 = 1 + x5

As we increase x5, the other variables will decrease. Once x5 reaches 3
2 , x1 will drop to 0. We can’t

increase x5 any further, or x1 will become negative, and our point will no longer be feasible.

Since x1 is the variable that drops to 0 first, it’s the one that leaves the basis. Our new basis is
B′′ = (2, 3, 5).

In principle, we could recompute the entire matrix by finding A−1B′′ and simplifying A−1B′′Ax = A−1B′′b.
That’s too much work, though. Instead, we can proceed by row reduction.

Since x1 (the basic variable with a pivot in the first row) leaves, we want to make x5 the new
basic variable with a pivot in the first row. So the boxed entry should be the new pivot, and row
reduction leads us to the next matrix:1 0 0 2 2

0 1 0 1 1
0 0 1 1 −1

x =

3
3
1

  

 1/2 0 0 1 1
−1/2 1 0 0 0

1/2 0 1 2 0

x =

3/2
3/2
5/2


How can we quickly tell which variable leaves the basis? Two factors go into figuring out which
variable drops to 0 first:

• The rate at which they change as we increase x5, given by x5’s column (2, 1,−1).

• The starting values of the variables, given by the right-hand side (3, 3, 1).

A “first pass” through the variables tells us that x3 is never going to hit 0: the −1 in x5’s column
tells us that the rate of change is +1. So we can forget about x3, and compare only x1 and x2.

To compare them, we can take the ratios starting value
rate of decrease , which is 3

2 for x1 and 3
1 = 3 for x2. Since

x1 has the smaller value, it’s the first to drop to 0, so it’s the one that leaves the basis.

In general, the strategy is to compare all rows with a positive entry in the entering variable’s
column. Then, take the ratio rightmost column

entering variable’s column for each such row, and pick the variable with
the smallest ratio to leave the basis.
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