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1 Introducing objective functions

Let’s take an example linear program in equational form, conveniently formulated so that it starts
out row-reduced:

maximize
x∈R5

x1 + x2 + x3 + x4 + x5

subject to x1 + 2x4 + x5 = 1

x2 − 3x4 + x5 = 2

x3 + x4 − 3x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

The first thing to realize is that when the equations hold, the objective function has many equivalent
forms. Since x1+2x4+x5 = 1, for example, if we subtract x1+2x4+x5 and add 1, we can maximize
x2 + x3 − x4 + 1 instead (and get the same solution).

Life gets a bit more convenient if we are only adding and subtracting equations. So we will slightly
rephrase the problem as

maximize
x∈R5

z

subject to x1 + x2 + x3 + x4 + x5 = z

x1 + 2x4 + x5 = 1

x2 − 3x4 + x5 = 2

x3 + x4 − 3x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

Which of the many equivalent expressions for z should we use? Well, one of the nice things about
the row-reduced equations is that we can set x4 = x5 = 0 and read off a basic solution. We can
eliminate x1, x2, x3 from our expression for z, and then be able to read off the objective value of the
basic solution, too. To do this, subtract all other equations (or, in general, their multiples) from
the equation for z, getting:

maximize
x∈R5,z∈R

z

subject to x4 + 2x5 = z − 6

x1 + 2x4 + x5 = 1

x2 − 3x4 + x5 = 2

x3 + x4 − 3x5 = 3

x1, x2, x3, x4, x5 ≥ 0.

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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The basic solution x = (1, 2, 3, 0, 0) obtained by setting x4 = x5 = 0 satisfies 0 = z − 6, so the
objective value is 6.

2 The simplex tableau

At this point, it’s convenient to switch away from writing out an entire system of equations every
single time: after all, when solving systems of equations in linear algebra, we just write down grids
of numbers. This notation for the simplex method is called a simplex tableau and includes a bit
more information:

x1 x2 x3 x4 x5
x1 1 0 0 2 1 1
x2 0 1 0 −3 1 2
x3 0 0 1 1 −3 3

−z 0 0 0 1 2 −6

Some comments:

• The columns are simply labeled with the name of the variable whose coefficients are written
in that column. This should really be done in ordinary Gaussian elimination as well, but
people are lazy.

• The first three rows are labeled with the basic variable “in charge of” that row. When you
set the nonbasic variables x4 and x5 to 0, we find the value of that basic variable, in the
rightmost column. Here, x1 = 1, x2 = 2, and x3 = 3.

• The final row is the row with the objective function in it. It is labeled −z, because the
rightmost column of −6 contains the negative of z’s value when x = (1, 2, 3, 0, 0).

Why does it contain the negative of z’s value? Because the row is short for the equation
“x4 + 2x5 = z − 6”.

Why don’t we just write 6 instead of −6 and z instead of −z? Because we want to set it up
so that we can just subtract any row from any other row, and end up with true equations.

3 Pivoting and the simplex tableau

Let’s see what happens when we do a pivot step to bring x4 into the basis.

Some review: when x5 stays 0, but x4 changes, the three equations tell us that x1, x2, x3 change
according to the rules

x1,= 1− 2x4 x2 = 2 + 3x4, x3 = 3− x4.

As we increase x4, x1 will reach 0 when x4 = 1
2 , x2 will never reach 0, and x3 will reach 0 when

x4 = 3. The first variable to reach 0 is x1, so x1 leaves the basis and x4 enters.

We can quickly determine this by taking the ratios of the right-hand-side constants over the co-
efficients of x4. (We skip the ratio in the x2 row, because the coefficient of x4 is negative.) For
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convenience, let’s record these in the tableau:

x1 x2 x3 x4 x5 x4’s ratios

x1 1 0 0 2 1 1 1/2
x2 0 1 0 −3 1 2 —
x3 0 0 1 1 −3 3 3/1

−z 0 0 0 1 2 −6

To find the variable that leaves the basis, we look for the smallest of these ratios, which is x1 in
this case. So we want to make the boxed entry of the tableau, x4’s entry in x1’s row, be the new
pivot for that row. This is just row reduction. We divide that row by 2, then add or subtract
appropriate multiples of that row from other rows, to make every other entry in x4’s column 0.
The result:

x1 x2 x3 x4 x5
x4 1/2 0 0 1 1/2 1/2
x2 3/2 1 0 0 5/2 7/2
x3 −1/2 0 1 0 −7/2 5/2

−z −1/2 0 0 0 3/2 −13/2

The new basic feasible solution is x = (0, 72 ,
5
2 ,

1
2 , 0) with objective value 13

2 .

4 Pivoting and the objective function

After this pivot step, the objective value increased from 6 to 13
2 = 6.5. This is good, because we’re

trying to maximize z, but it’s a complete accident, because we didn’t know what we were doing.
How can we predict what will happen?

We affect the value of z when we zero out x4’s coefficient in the objective row. Specifically,

• If that coefficient is positive, then we will subtract a multiple of x4’s row from the objective
row. The rightmost value in x4’s row must be nonnegative: it’s the value of x4 in the new
basic feasible solution. So we’ll subtract a nonnegative value from the current −z, decreasing
−z and increasing z.

• If that coefficient is negative, then we will add a multiple of x4’s row to the objective row.
This will increase −z, so it will decrease z.

The coefficient of a variable xi in the objective row is called xi’s reduced cost. (It is a “cost” by
analogy with an economic problem when the objective value is the total cost of doing something.
It is “reduced” because it has been changed by row reduction.) So the rule is:

The change in z from pivoting has the same sign as the reduced cost.

So if we’re solving a maximization problem, we want to pivot on variables with positive reduced
cost. If we’re solving a minimization problem, we want to pivot on variables with a negative reduced
cost.

More is true: the value of the reduced cost is actually the rate at which z changes as we increase
the variable we’re pivoting on. So if the reduced cost is very large (in absolute value) then the
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objective value is changing very quickly. As a result, one possible pivoting strategy is to choose the
pivot with the largest possible reduced cost (of the correct sign).

This isn’t foolproof, however, and you might also just choose the first pivot whose reduced cost has
the correct sign. Ways to make this choice are called “pivoting rules”, and we will talk about the
details later.

5 The end of the simplex method

If we do another step of the simplex method, our options are to pivot on x1 and x5. We shouldn’t
pivot on x1, because it has a negative reduced cost (not surprising, since pivoting on x1 would
bring us back to where we were before). Pivoting on x5 makes x4 leave the basis, and we get the
tableau

x1 x2 x3 x4 x5
x5 1 0 0 2 1 1
x2 −1 1 0 −5 0 1
x3 3 0 1 7 0 6

−z −2 0 0 −3 0 −8

The new basic feasible solution is x = (0, 1, 6, 0, 1), with objective value 8.

Now what? All the reduced costs are negative, so no single pivot step will improve our situation.
This by itself might not be a guarantee of anything: could the actual optimal solution be some
other point which we can’t get to by a single pivot step?

No, it couldn’t, and hidden in this simplex tableau is a proof that 8 is the best possible objective
value. Translated back into equation form, the objective row of the tableau reads

−2x1 − 3x4 = z − 8 ⇐⇒ z = 8− 2x1 − 3x4.

Both 2x1 and 3x4 are guaranteed to be nonnegative, because x ≥ 0 is a constraint of our linear
program. So this tells us that:

• The maximum value of z, the objective function, can’t possibly be higher than 8, because
we’re starting at 8 and subtracting some nonnegative stuff.

• Since our current basic feasible solution x = (0, 1, 6, 0, 1) achieves z = 8, it is the optimal
solution.

• Any optimal solution must have x1 = x4 = 0: if either of these variables is strictly positive,
then z < 8. Conversely, any solution with x1 = x4 = 0 must have z = 8, so it will be optimal.

(In this case, the solution we’ve found is the only optimal solution, but this is useful to know
in problems where there are many optimal solutions.)

This argument works whenever we use the simplex method. So if no more pivot steps are available
that move z in the right direction, then the simplex method is finished and we’ve arrived at an
optimal solution.
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