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1 An example with nothing weird going on

Consider the linear program
maximize

x,y∈R
2x + 3y

subject to −x + y ≤ 3

x− 2y ≤ 2

x + y ≤ 7

x, y ≥ 0.

This is not in equational form, but we can easily put it in equational form by adding slack vari-
ables:

maximize
x,y∈R

2x + 3y

subject to −x + y + s1 = 3

x− 2y + s2 = 2

x + y + s3 = 7

x, y, s1, s2, s3 ≥ 0.

Adding slack variables has a convenient bonus effect. The slack variables (s1, s2, s3) form a conve-
nient set of basic variables to start with, for two reasons:

• The tableau will already be row-reduced for the slack variables, since each one shows up in
only one equation. This will be true any time we add slack variables.

• The basic solution is (x, y, s1, s2, s3) = (0, 0, 3, 2, 7), which is feasible. This happens whenever
we start with inequalities Ax ≤ b, where b ≥ 0. So it’s not always useful, but sometimes
makes our lives easier.

Here is the resulting tableau, and a graph of the feasible region (of the original LP in x and y) with
the corresponding basic feasible solution marked:

x y s1 s2 s3
s1 −1 1 1 0 0 3
s2 1 −2 0 1 0 2
s3 1 1 0 0 1 7

−z 2 3 0 0 0 0
(0, 0)

x

y

1This document comes from the Math 482 course webpage: https://faculty.math.illinois.edu/~mlavrov/

courses/482-spring-2020.html
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In a well-behaved 2-dimensional linear program, exactly 2 constraints should be tight at each corner.
Specifically, it’s the ones corresponding to the nonbasic variables. In this tableau, the nonbasic
variables are x and y, and the constraints they “own” are the x ≥ 0 and y ≥ 0 constraints. So
we should be at the corner where these two constraints are tight: the intersection of x = 0 and
y = 0.

Let’s pivot on y to bring it into the basis. (This is an arbitrary choice: we could also have pivoted
on x.) Since s2’s coefficient of y is −2, it’s not a valid leaving variable; s1 and s3 have ratios of 3

1
and 7

1 , of which the smallest is 3. So y replaces s1 in the basis, giving us the new tableau (and new
corner point) below:

x y s1 s2 s3
y −1 1 1 0 0 3
s2 −1 0 2 1 0 8
s3 2 0 −1 0 1 4

−z 5 0 −3 0 0 −9

(0, 3)

x

y

The basic feasible solution is (x, y, s1, s2, s3) = (0, 3, 0, 8, 4). The nonbasic variables of the new
tableau are x and s1. As before, x “owns” the x ≥ 0 constraint. Meanwhile, s1 “owns” the s1 ≥ 0
constraint, but in the original linear program, this was the −x+ y ≤ 3 constraint. So we should be
at the corner where x = 0 and −x + y = 3 meet, and indeed, these lines intersect at (0, 3).

The choice of pivot variable corresponded to picking the direction in which we went around the
polygon: which edge out of (0, 0) we used. The edge from (0, 0) to (0, 3) moves away from the
y ≥ 0 constraint, so y is the variable that becomes basic. We could also have brought x into the
basis, moving away from the x ≥ 0 constraint.

But now, at (0, 3), there is only one good choice of pivot. We don’t want to go back to (0, 0), so
the only choice is to continue going clockwise. In the tableau, this corresponds to how we don’t
want to pivot on s1 (its reduced cost is negative, so pivoting would decrease z). Instead, the only
helpful choice of pivot is x, whose reduced cost is positive.

In x’s column, the coefficients of y and s2 are both negative, so those can’t be leaving variables.
Therefore x replaces s3 in the basis, giving us the new tableau (and new corner point) below:

x y s1 s2 s3
y 0 1 1/2 0 1/2 5
s2 0 0 3/2 1 1/2 10
x 1 0 −1/2 0 1/2 2

−z 0 0 −1/2 0 −5/2 −19

(2, 5)

x

y

Now all reduced costs are negative, so z is maximized and (2, 5) is the optimal solution.

2



(Here, s1 and s3 are nonbasic. The constraints they “own” are the −x + y ≤ 3 constraint and the
x + y ≤ 7 constraint. So we end up at the corner point where the lines −x + y = 3 and x + y = 7
intersect.)

If we had decided to pivot on x first, we would have arrived at the same final answer, but going
counterclockwise around the feasible region instead. There would have been three pivot steps, not
two, because there are three edges to take when going around that way.

2 An unbounded linear program

Let’s go back a step, to when we were at the point (0, 3). But now, suppose that the constraint
x + y ≤ 7 (corresponding to the variable s3) didn’t exist. Then the tableau, and feasible region,
would look like this:

x y s1 s2
y −1 1 1 0 3
s2 −1 0 2 1 8

−z 5 0 −3 0 −9

(0, 3)

x

y

The feasible region is unbounded in the direction we want to go.

It’s still a good idea to pivot on x. But now, both basic variables are ruled out at the first stage:
both of them have a negative coefficient in x’s column. There is no leaving variable to choose.

This is what it looks like when the linear program is unbounded, and z can be made arbitrarily
large. There is no optimal solution.

From this tableau, we can also learn a bit about how the linear program is unbounded. To do this,
let’s write down the equations for what happens when we increase x (the entering variable) while
keeping s1 (the other nonbasic variable) 0. Then we have{

−x + y +��HHs1 = 3

−x +��HH2s1 + s2 = 8
=⇒

{
y = x + 3

s2 = x + 8

In other words, as we pivot on x, we travel along the line y = x + 3; the full solution, with slack
variables, varies as (x, y, s1, s2) = (x, x + 3, 0, x + 8).

All this is happening behind the scenes when we do any pivot step of the simplex method. But here,
because the coefficients in x’s column were both negative, the slopes of y = x + 3 and s2 = x + 8
are both positive, which means that we can increase x without a limit. And since x had a positive
reduced cost of 5, we know that this gives us arbitrarily large objective values: more precisely, the
point (x, y, s1, s2) = (x, x + 3, 0, x + 8) has an objective value of z = 5x + 9.

Whenever we learn from the tableau that the linear program is unbounded, we can perform such
an analysis to find an infinite ray of feasible solutions along which the objective value improves
without bound.
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3 An example of degenerate pivoting

Now suppose we replace the x + y ≤ 7 constraint by the constraint x + 2y ≤ 6. Here is the initial
tableau and a graph of the feasible region:

x y s1 s2 s3
s1 −1 1 1 0 0 3
s2 1 −2 0 1 0 2
s3 1 2 0 0 1 6

−z 2 3 0 0 0 0
(0, 0)

x

y

The constraint −x+ y ≤ 3 is just barely irrelevant. The line −x+ y = 3 touches the feasible region
at the corner point (3, 0), and doesn’t change the feasibility of anything.

We can proceed as before and bring y into the basis. As before, s2 is out of consideration because
it has a negative coefficient in y’s column. Meanwhile, s1 and s3 have ratios 3

1 and 6
2 , so they are

tied for having the smallest ratio. As we increase y, s1 and s3 will decrease and hit 0 at the same
time.

Which variable do we choose in such a case? Right now, we have no way to tell which choice is
better, but either choice will give us a valid tableau. Let’s choose s1, because that’s what we did
last time. We get:

x y s1 s2 s3
y −1 1 1 0 0 3
s2 −1 0 2 1 0 8
s3 3 0 −2 0 1 0

−z 5 0 −3 0 0 −9

(0, 3)

x

y

Here is where things start to go wrong. We should pivot on x, because it’s the only variable with
positive reduced cost. Both y and s2 have negative coefficients in x’s column, so the leaving variable
must be s3. But when we make this happen, the values of the variables don’t change!

x y s1 s2 s3
y 0 1 1/3 0 1/3 3
s2 0 0 4/3 1 1/3 8
x 1 0 −2/3 0 1/3 0

−z 0 0 1/3 0 −5/3 −9

(0, 3)

x

y

The problem is that the three lines x = 0, −x + y = 3, and x + 2y = 6 all meet at the point (0, 3).
Previously, when x and s1 were nonbasic, we thought of (0, 3) as the intersection of x = 0 and
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−x + y = 3. Now, s1 and s3 are nonbasic, and we’ve “moved” to the intersection of −x + y = 3
and x + 2y = 6. This is also (0, 3).

This is called degenerate pivoting. There’s one big problem with degenerate pivoting:

• Usually, we can say: the simplex method is always improving the value of z, so it can never
revisit a vertex, and since there’s only finitely many vertices, it has to reach the right one
eventually.

• With degenerate pivoting, the value of z does not always improve. So we have no guarantee
that the simplex method won’t keep going forever, stuck at the same vertex being represented
in different ways.

In this example, we’ll leave the point (0, 3) after one more step. But in more complicated examples,
when many constraints meet at one vertex, staying at that vertex forever is a real danger. To avoid
this, we’ll need to develop pivoting rules that avoid infinite loops, by telling us the right variable
to remove from the basis in cases when there’s a tie.
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