Intro to Zoom Lecture

 Math 482, Lecture 20.5Misha Lavrov

March 23, 2020

Plans for the online future

- Homework due Friday to:
uiuc.math482@gmail.com

Plans for the online future

- Homework due Friday to:
uiuc.math482@gmail.com
- Lectures on Zoom via the same link:
https://illinois.zoom.us/j/499672332

Plans for the online future

- Homework due Friday to:
uiuc.math482@gmail.com
- Lectures on Zoom via the same link:
https://illinois.zoom.us/j/499672332
- Exams online, somehow.

Plans for the online future

- Homework due Friday to:
uiuc.math482@gmail.com
- Lectures on Zoom via the same link:
https://illinois.zoom.us/j/499672332
- Exams online, somehow.
- Today: a bit of review of Fourier-Motzkin elimination, to get you acquainted with the online setting.

Plans for the online future

- Homework due Friday to:
uiuc.math482@gmail.com
- Lectures on Zoom via the same link:
https://illinois.zoom.us/j/499672332
- Exams online, somehow.
- Today: a bit of review of Fourier-Motzkin elimination, to get you acquainted with the online setting.
(Questions?)

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities $(a)-(e)$.
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{aligned}
& \text { (a) }-x+y \leq 3 \\
& \text { (b) }-x-2 y \leq-4 \\
& \text { (c) } x+y \leq 7 \\
& \text { (d) } \quad-x \leq 0 \\
& \text { (e) } \\
& -y \leq 0
\end{aligned}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities $(a)-(e)$.
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{aligned}
& \text { (a) } \quad-x+y \leq 3 \quad \text { (a) } \quad-x+y \leq 3 \\
& \text { (b) }-x-2 y \leq-4 \\
& \text { (c) } \quad x+y \leq 7 \\
& \text { (d) } \quad-x \leq 0 \\
& \text { (e) } \quad-y \leq 0
\end{aligned}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities $(a)-(e)$.
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{aligned}
& \text { (a) }-x+y \leq 3 \\
& \text { (a) }-x+y \leq 3 \\
& \text { (b) }-x-2 y \leq-4 \\
& \frac{1}{2} \text { (b) }-\frac{1}{2} x-y \leq-2 \\
& \text { (c) } \quad x+y \leq 7 \quad \rightsquigarrow \\
& \text { (d) } \quad-x \leq 0 \\
& \text { (e) } \quad-y \leq 0
\end{aligned}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{array}{lccc}
\text { (a) } & -x+y \leq 3 & \text { (a) } & -x+y \leq 3 \\
\text { (b) } & -x-2 y \leq-4 & \frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 \\
\text { (c) } & x+y \leq 7 & \rightsquigarrow & \text { (c) } \\
\text { (d) } & -x \leq 0 & x+y \leq 7 \\
\text { (e) } & -y \leq 0 & &
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{array}{lccc}
\text { (a) } & -x+y \leq 3 & \text { (a) } & -x+y \leq 3 \\
\text { (b) } & -x-2 y \leq-4 & \frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 \\
\text { (c) } & x+y \leq 7 & \rightsquigarrow & \text { (c) } \\
\text { (d) } & -x \leq 0 & \text { (d) } & -x \leq 0 \\
\text { (e) } & -y \leq 0 & &
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{array}{lccc}
\text { (a) } & -x+y \leq 3 & \text { (a) } & -x+y \leq 3 \\
\text { (b) } & -x-2 y \leq-4 & \frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 \\
\text { (c) } & x+y \leq 7 & \rightsquigarrow & \text { (c) } \\
\text { (d) } & -x \leq 0 & \text { (d) } & -x \leq 0 \\
\text { (e) } & -y \leq 0 & \text { (e) } & -y \leq 0
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 1: Scale all inequalities so that the coefficient of y is $-1,0$, or 1 in each.

$$
\begin{array}{lccc}
\text { (a) } & -x+y \leq 3 & \text { (a) } & -x+y \leq 3 \\
\text { (b) } & -x-2 y \leq-4 & \frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 \\
\text { (c) } & x+y \leq 7 & \text { (c) } & x+y \leq 7 \\
\text { (d) } & -x \leq 0 & \text { (d) } & -x \leq 0 \\
\text { (e) } & -y \leq 0 & \text { (e) } & -y \leq 0
\end{array}
$$

(Questions?)

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.
(a) $-x+y \leq 3$
$\frac{1}{2}$ (b) $-\frac{1}{2} x-y \leq-2$
(c) $\quad x+y \leq 7 \quad \rightsquigarrow$
(d) $\quad-x \leq 0$
(e) $\quad-y \leq 0$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.

$$
\begin{array}{lll}
\text { (a) } & -x+y \leq 3 \\
\frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 \\
\text { (c) } & x+y \leq 7 \\
\text { (d) } & -x \leq 0 \\
\text { (e) } & -y \leq 0
\end{array} \quad(a)+\frac{1}{2}(b) \quad-\frac{3}{2} x \leq 1
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.

$$
\begin{array}{cccc}
\text { (a) } & -x+y \leq 3 & (a)+\frac{1}{2}(b) & -\frac{3}{2} x \leq 1 \\
\frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 & (a)+(e) & -x \leq 3 \\
\text { (c) } & x+y \leq 7 \\
\text { (d) } & -x \leq 0 & & \\
\text { (e) } & -y \leq 0 & &
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.

$$
\begin{array}{cccc}
\text { (a) } & -x+y \leq 3 & (a)+\frac{1}{2}(b) & -\frac{3}{2} x \leq 1 \\
\frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 & (a)+(e) & -x \leq 3 \\
\text { (c) } & x+y \leq 7 & \rightsquigarrow & (c)+\frac{1}{2}(b) \\
\text { (d) } & -x \leq 0 & \frac{1}{2} x \leq 5 \\
\text { (e) } & -y \leq 0 & &
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.

$$
\begin{array}{cccc}
\text { (a) } & -x+y \leq 3 & (a)+\frac{1}{2}(b) & -\frac{3}{2} x \leq 1 \\
\frac{1}{2}(b) & -\frac{1}{2} x-y \leq-2 & (a)+(e) & -x \leq 3 \\
\text { (c) } & x+y \leq 7 & \rightsquigarrow & (c)+\frac{1}{2}(b) \\
\text { (d) } & \frac{1}{2} x \leq 5 \\
\text { (e) } & -x \leq 0 & & (c)+(e) \\
\text { (e) } & -y \leq 0 & &
\end{array}
$$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.
(a) $-x+y \leq 3$
(a) $+\frac{1}{2}(b) \quad-\frac{3}{2} x \leq 1$
$\frac{1}{2}$ (b) $-\frac{1}{2} x-y \leq-2$
(a) + (e) $\quad-x \leq 3$
(c) $\quad x+y \leq 7 \quad \rightsquigarrow(c)+\frac{1}{2}(b) \quad \frac{1}{2} x \leq 5$
(d) $\quad-x \leq 0$
(e) $\quad-y \leq 0$
(c) $+(e) \quad x \leq 7$
(d) $\quad-x \leq 0$

Fourier-Motzkin elimination

Goal: We want to eliminate y from inequalities (a)-(e).
Step 2: Combine all $+y$ inequalities with all $-y$ inequalities.
(a) $-x+y \leq 3$
(a) $+\frac{1}{2}(b) \quad-\frac{3}{2} x \leq 1$
$\frac{1}{2}$ (b) $-\frac{1}{2} x-y \leq-2$
(a) + (e) $\quad-x \leq 3$
(c) $\quad x+y \leq 7 \quad \rightsquigarrow(c)+\frac{1}{2}(b) \quad \frac{1}{2} x \leq 5$
(d) $\quad-x \leq 0$
(e) $\quad-y \leq 0$
(c) $+(e) \quad x \leq 7$
(d) $\quad-x \leq 0$
(Questions?)

