The Bipartite Matching Problem Math 482, Lecture 21

Misha Lavrov

March 25, 2020

Definition

A **bipartite graph** is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$.

Definition

A **bipartite graph** is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are **vertices**; elements of E are **edges**; if $(i,j) \in E$ then i and j are **endpoints** of edge (i,j) and called **adjacent**.

Definition

A **bipartite graph** is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are **vertices**; elements of E are **edges**; if $(i,j) \in E$ then i and j are **endpoints** of edge (i,j) and called **adjacent**.

We could write out X, Y, E as lists:

- $X = \{1, 2, 3\}$ and $Y = \{4, 5, 6, 7\}$.
- $E = \{(1,4), (1,6), (2,5), (2,7), (3,4), (3,5)\}.$

Definition

A **bipartite graph** is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are **vertices**; elements of E are **edges**; if $(i,j) \in E$ then i and j are **endpoints** of edge (i,j) and called **adjacent**.

We could also draw a picture:

Definition

A **matching** in a bipartite graph is a set M of edges that share no endpoints.

Definition

A **matching** in a bipartite graph is a set M of edges that share no endpoints.

Problem

Given a bipartite graph, find the largest matching.

Definition

A **matching** in a bipartite graph is a set M of edges that share no endpoints.

$$M_1 = \{(1,4),(2,5)\}$$

$$\textit{M}_2 = \{(1,6), (2,7), (3,4)\}$$

Problem

Given a bipartite graph, find the largest matching.

Definition

A **matching** in a bipartite graph is a set M of edges that share no endpoints.

$$M_1 = \{(1,4),(2,5)\}$$

$$M_2 = \{(1,6), (2,7), (3,4)\}$$

Definition

A **matching** in a bipartite graph is a set M of edges that share no endpoints.

$$\textit{M}_1 = \{(1,4),(2,5)\}$$

$$\textit{M}_2 = \{(1,6), (2,7), (3,4)\}$$

Problem

Given a bipartite graph, find the largest matching.

Bipartite Matching LP

$$\begin{array}{lll} \text{maximize} & x_{14} + x_{16} + x_{25} + x_{27} + x_{34} + x_{35} \\ \text{subject to} & x_{14} + x_{16} & \leq 1 \\ & x_{25} + x_{27} & \leq 1 \\ & x_{34} + x_{35} \leq 1 \\ & x_{14} & + x_{34} & \leq 1 \\ & x_{25} & + x_{35} \leq 1 \\ & x_{16} & \leq 1 \\ & x_{27} & \leq 1 \\ & x_{14}, x_{16}, x_{25}, x_{27}, x_{34}, x_{35} \geq 0 \end{array}$$

Idea: $x_{ij} = 1$ if (i, j) is in the matching, and $x_{ij} = 0$ otherwise.

• This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14} = \frac{1}{2}$? We can't interpret this as a matching!

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14} = \frac{1}{2}$? We can't interpret this as a matching!
- Enforcing the constraint that x_{ij} is an integer ($x_{ij} = 0$ or $x_{ij} = 1$) is hard. (We'll talk about this later in the class.)

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14} = \frac{1}{2}$? We can't interpret this as a matching!
- Enforcing the constraint that x_{ij} is an integer ($x_{ij} = 0$ or $x_{ij} = 1$) is hard. (We'll talk about this later in the class.)
- The bipartite matching LP has a special property that guarantees integer optimal solutions, without having to explicitly ask for it.

Totally unimodular matrices

Definition

A matrix A is **totally unimodular** (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant -1, 0, or 1.

Totally unimodular matrices

Definition

A matrix A is **totally unimodular** (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant -1, 0, or 1.

Theorem

If the $m \times n$ matrix A is TU and $\mathbf{b} \in \mathbb{R}^m$ is an integer vector, then all corner points of $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ have integer coordinates.

Totally unimodular matrices

Definition

A matrix A is **totally unimodular** (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant -1, 0, or 1.

Theorem

If the $m \times n$ matrix A is TU and $\mathbf{b} \in \mathbb{R}^m$ is an integer vector, then all corner points of $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ have integer coordinates.

On Friday, we will see that for the bipartite matching LP, the constraint matrix A is always TU. This explains why we don't have to worry about integrality!

How do we find a basic solution of $A\mathbf{x} = \mathbf{b}$?

• Split x into basic variables x_B and nonbasic variables x_N .

How do we find a basic solution of $A\mathbf{x} = \mathbf{b}$?

- Split x into basic variables x_B and nonbasic variables x_N .
- Set $\mathbf{x}_{\mathcal{B}} = A_{\mathcal{B}}^{-1}\mathbf{b}$.

How do we find a basic solution of $A\mathbf{x} = \mathbf{b}$?

- Split x into basic variables $x_{\mathcal{B}}$ and nonbasic variables $x_{\mathcal{N}}$.
- Set $\mathbf{x}_{\mathcal{B}} = A_{\mathcal{B}}^{-1}\mathbf{b}$.
- Set $\mathbf{x}_{\mathcal{N}} = \mathbf{0}$.

How do we find a basic solution of $A\mathbf{x} = \mathbf{b}$?

- Split x into basic variables x_B and nonbasic variables x_N .
- Set $\mathbf{x}_{\mathcal{B}} = A_{\mathcal{B}}^{-1}\mathbf{b}$.
- Set $\mathbf{x}_{\mathcal{N}} = \mathbf{0}$.

If we can guarantee that the inverse matrix $A_{\mathcal{B}}^{-1}$ has integer entries, then $\mathbf{x}_{\mathcal{B}}$ will always be an integer, too.

Big idea #2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $det(M) = \pm 1$.

Big idea #2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $det(M) = \pm 1$.

 \implies : We need $\det(M)=\pm 1$, otherwise $\det(M^{-1})=\frac{1}{\det(M)}$ won't be an integer (and M^{-1} can't have all integer entries).

Big idea #2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $det(M) = \pm 1$.

 \implies : We need $\det(M) = \pm 1$, otherwise $\det(M^{-1}) = \frac{1}{\det(M)}$ won't be an integer (and M^{-1} can't have all integer entries).

 \iff : There is a formula for M^{-1} in which the denominator is det(M). E.g., for 3×3 matrices,

$$M^{-1} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}^{-1} = \frac{1}{\det(M)} \begin{bmatrix} ei - fh & ch - bi & bf - ce \\ fg - di & ai - cg & cd - af \\ dh - eg & bg - ah & ae - bd \end{bmatrix}$$

Nitpicky little ideas

• Why are we looking at determinants of all submatrices, instead of just $det(A_B)$ for every B?

Nitpicky little ideas

• Why are we looking at determinants of all submatrices, instead of just $det(A_B)$ for every B?

Because we have a system of inequalities $A\mathbf{x} \leq \mathbf{b}$, which gives us the bigger system of equations $A\mathbf{x} + I\mathbf{s} = \mathbf{b}$. If we take k columns from A and m - k columns from I to build A_B , the determinant will equal the determinant of a smaller $k \times k$ submatrix of A.

Nitpicky little ideas

• Why are we looking at determinants of all submatrices, instead of just $det(A_B)$ for every B?

Because we have a system of inequalities $A\mathbf{x} \leq \mathbf{b}$, which gives us the bigger system of equations $A\mathbf{x} + I\mathbf{s} = \mathbf{b}$. If we take k columns from A and m - k columns from I to build A_B , the determinant will equal the determinant of a smaller $k \times k$ submatrix of A.

 \bullet Why does the TU condition allow determinants to be 0 in addition to $\pm 1?$

Not all choices of $\mathcal B$ are a valid basis: sometimes $\det(A_{\mathcal B})=0$, and $A_{\mathcal B}^{-1}$ does not exist. But if this happens, that's fine. If some basis $\mathcal B$ doesn't give any basic solution, in particular it does not give a fractional basic solution.