The Bipartite Matching Problem Math 482, Lecture 21

Misha Lavrov

March 25, 2020

Bipartite graph

Definition

A bipartite graph is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$.

Bipartite graph

Definition

A bipartite graph is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are vertices; elements of E are edges; if $(i, j) \in E$ then i and j are endpoints of edge (i, j) and called adjacent.

Bipartite graph

Definition

A bipartite graph is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are vertices; elements of E are edges; if $(i, j) \in E$ then i and j are endpoints of edge (i, j) and called adjacent.

We could write out X, Y, E as lists:

- $X=\{1,2,3\}$ and $Y=\{4,5,6,7\}$.
- $E=\{(1,4),(1,6),(2,5),(2,7),(3,4),(3,5)\}$.

Bipartite graph

Definition

A bipartite graph is formally a triple (X, Y, E) where X and Y are two sets, and E is some subset of the pairs $X \times Y$. Elements of $X \cup Y$ are vertices; elements of E are edges; if $(i, j) \in E$ then i and j are endpoints of edge (i, j) and called adjacent.

We could also draw a picture:

Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no endpoints.

Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no endpoints.

Problem

Given a bipartite graph, find the largest matching.

Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no endpoints.

$$
\begin{aligned}
& M_{1}=\{(1,4),(2,5)\} \\
& M_{2}=\{(1,6),(2,7),(3,4)\}
\end{aligned}
$$

Problem

Given a bipartite graph, find the largest matching.

Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no endpoints.

$$
\begin{aligned}
& M_{1}=\{(1,4),(2,5)\} \\
& M_{2}=\{(1,6),(2,7),(3,4)\}
\end{aligned}
$$

Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no endpoints.

$$
M_{1}=\{(1,4),(2,5)\}
$$

$$
M_{2}=\{(1,6),(2,7),(3,4)\}
$$

Problem

Given a bipartite graph, find the largest matching.

Bipartite Matching LP

Idea: $x_{i j}=1$ if (i, j) is in the matching, and $x_{i j}=0$ otherwise.

What about integrality?

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.

What about integrality?

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14}=\frac{1}{2}$? We can't interpret this as a matching!

What about integrality?

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14}=\frac{1}{2}$? We can't interpret this as a matching!
- Enforcing the constraint that $x_{i j}$ is an integer ($x_{i j}=0$ or $x_{i j}=1$) is hard. (We'll talk about this later in the class.)

What about integrality?

- This linear program does, in fact, find the largest matching in the bipartite graph. It works correctly for all bipartite graphs.
- But it looks like there might be a problem. What if the optimal solution sets, for example, $x_{14}=\frac{1}{2}$? We can't interpret this as a matching!
- Enforcing the constraint that $x_{i j}$ is an integer ($x_{i j}=0$ or $x_{i j}=1$) is hard. (We'll talk about this later in the class.)
- The bipartite matching LP has a special property that guarantees integer optimal solutions, without having to explicitly ask for it.

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant $-1,0$, or 1 .

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant $-1,0$, or 1 .

Theorem

If the $m \times n$ matrix A is $T U$ and $\mathbf{b} \in \mathbb{R}^{m}$ is an integer vector, then all corner points of $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ have integer coordinates.

Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant $-1,0$, or 1 .

Theorem

If the $m \times n$ matrix A is $T U$ and $\mathbf{b} \in \mathbb{R}^{m}$ is an integer vector, then all corner points of $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ have integer coordinates.

On Friday, we will see that for the bipartite matching LP, the constraint matrix A is always TU. This explains why we don't have to worry about integrality!

Big idea \#1: integer inverses

How do we find a basic solution of $A \mathbf{x}=\mathbf{b}$?

- Split \mathbf{x} into basic variables $\mathbf{x}_{\mathcal{B}}$ and nonbasic variables $\mathbf{x}_{\mathcal{N}}$.

Big idea \#1: integer inverses

How do we find a basic solution of $A \mathbf{x}=\mathbf{b}$?

- Split \mathbf{x} into basic variables $\mathbf{x}_{\mathcal{B}}$ and nonbasic variables $\mathbf{x}_{\mathcal{N}}$.
- Set $\mathbf{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} \mathbf{b}$.

Big idea \#1: integer inverses

How do we find a basic solution of $A \mathbf{x}=\mathbf{b}$?

- Split \mathbf{x} into basic variables $\mathbf{x}_{\mathcal{B}}$ and nonbasic variables $\mathbf{x}_{\mathcal{N}}$.
- Set $\mathbf{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} \mathbf{b}$.
- Set $\mathbf{x}_{\mathcal{N}}=\mathbf{0}$.

Big idea \#1: integer inverses

How do we find a basic solution of $A \mathbf{x}=\mathbf{b}$?

- Split \mathbf{x} into basic variables $\mathbf{x}_{\mathcal{B}}$ and nonbasic variables $\mathbf{x}_{\mathcal{N}}$.
- Set $\mathbf{x}_{\mathcal{B}}=A_{\mathcal{B}}^{-1} \mathbf{b}$.
- Set $\mathbf{x}_{\mathcal{N}}=\mathbf{0}$.

If we can guarantee that the inverse matrix $A_{\mathcal{B}}^{-1}$ has integer entries, then $\mathbf{x}_{\mathcal{B}}$ will always be an integer, too.

Big idea \#2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $\operatorname{det}(M)= \pm 1$.

Big idea \#2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $\operatorname{det}(M)= \pm 1$.
\Longrightarrow : We need $\operatorname{det}(M)= \pm 1$, otherwise $\operatorname{det}\left(M^{-1}\right)=\frac{1}{\operatorname{det}(M)}$ won't be an integer (and M^{-1} can't have all integer entries).

Big idea \#2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M^{-1} also with integer entries if and only if $\operatorname{det}(M)= \pm 1$.
\Longrightarrow : We need $\operatorname{det}(M)= \pm 1$, otherwise $\operatorname{det}\left(M^{-1}\right)=\frac{1}{\operatorname{det}(M)}$ won't be an integer (and M^{-1} can't have all integer entries).
\Longleftarrow : There is a formula for M^{-1} in which the denominator is $\operatorname{det}(M)$. E.g., for 3×3 matrices,

$$
M^{-1}=\left[\begin{array}{lll}
a & b & c \\
d & e & f \\
g & h & i
\end{array}\right]^{-1}=\frac{1}{\operatorname{det}(M)}\left[\begin{array}{ccc}
e i-f h & c h-b i & b f-c e \\
f g-d i & a i-c g & c d-a f \\
d h-e g & b g-a h & a e-b d
\end{array}\right]
$$

Nitpicky little ideas

- Why are we looking at determinants of all submatrices, instead of just $\operatorname{det}\left(A_{\mathcal{B}}\right)$ for every \mathcal{B} ?

Nitpicky little ideas

- Why are we looking at determinants of all submatrices, instead of just $\operatorname{det}\left(A_{\mathcal{B}}\right)$ for every \mathcal{B} ?

Because we have a system of inequalities $A \mathbf{x} \leq \mathbf{b}$, which gives us the bigger system of equations $A \mathbf{x}+/ \mathbf{s}=\mathbf{b}$. If we take k columns from A and $m-k$ columns from $/$ to build $A_{\mathcal{B}}$, the determinant will equal the determinant of a smaller $k \times k$ submatrix of A.

Nitpicky little ideas

- Why are we looking at determinants of all submatrices, instead of just $\operatorname{det}\left(A_{\mathcal{B}}\right)$ for every \mathcal{B} ?

Because we have a system of inequalities $A \mathbf{x} \leq \mathbf{b}$, which gives us the bigger system of equations $A \mathbf{x}+/ \mathbf{s}=\mathbf{b}$. If we take k columns from A and $m-k$ columns from $/$ to build $A_{\mathcal{B}}$, the determinant will equal the determinant of a smaller $k \times k$ submatrix of A.

- Why does the TU condition allow determinants to be 0 in addition to ± 1 ?

Not all choices of \mathcal{B} are a valid basis: sometimes $\operatorname{det}\left(A_{\mathcal{B}}\right)=0$, and $A_{\mathcal{B}}^{-1}$ does not exist. But if this happens, that's fine. If some basis \mathcal{B} doesn't give any basic solution, in particular it does not give a fractional basic solution.

