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Bipartite graph

Definition

A bipartite graph is formally a triple (X ,Y ,E ) where X and Y
are two sets, and E is some subset of the pairs X × Y .

Elements of X ∪ Y are vertices; elements of E are edges; if
(i , j) ∈ E then i and j are endpoints of edge (i , j) and called
adjacent.

We could write out X ,Y ,E as lists:

X = {1, 2, 3} and Y = {4, 5, 6, 7}.

E = {(1, 4), (1, 6), (2, 5), (2, 7), (3, 4), (3, 5)}.
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We could also draw a picture:

1 2 3

4 5 6 7



Bipartite matching

Definition

A matching in a bipartite graph is a set M of edges that share no
endpoints.

1 2 3

4 5 6 7

M1 = {(1, 4), (2, 5)}

M2 = {(1, 6), (2, 7), (3, 4)}

Problem

Given a bipartite graph, find the largest matching.
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Bipartite Matching LP

1 2 3

4 5 6 7

maximize x14 + x16 + x25 + x27 + x34 + x35

subject to x14 + x16 ≤ 1

x25 + x27 ≤ 1

x34 + x35 ≤ 1

x14 + x34 ≤ 1

x25 + x35 ≤ 1

x16 ≤ 1

x27 ≤ 1

x14, x16, x25, x27, x34, x35 ≥ 0

Idea: xij = 1 if (i , j) is in the matching, and xij = 0 otherwise.



What about integrality?

This linear program does, in fact, find the largest matching in
the bipartite graph. It works correctly for all bipartite graphs.

But it looks like there might be a problem. What if the
optimal solution sets, for example, x14 = 1

2? We can’t
interpret this as a matching!

Enforcing the constraint that xij is an integer (xij = 0 or
xij = 1) is hard. (We’ll talk about this later in the class.)

The bipartite matching LP has a special property that
guarantees integer optimal solutions, without having to
explicitly ask for it.
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Totally unimodular matrices

Definition

A matrix A is totally unimodular (TU for short) if every square
submatrix (any k rows and any k columns, not necessarily
consecutive, for all values of k) has determinant −1, 0, or 1.

Theorem

If the m × n matrix A is TU and b ∈ Rm is an integer vector, then
all corner points of {x ∈ Rn : Ax ≤ b, x ≥ 0} have integer
coordinates.

On Friday, we will see that for the bipartite matching LP, the
constraint matrix A is always TU. This explains why we don’t have
to worry about integrality!
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Big idea #1: integer inverses

How do we find a basic solution of Ax = b?

Split x into basic variables xB and nonbasic variables xN .

Set xB = A−1B b.

Set xN = 0.

If we can guarantee that the inverse matrix A−1B has integer
entries, then xB will always be an integer, too.
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Big idea #2: from inverses to determinants

Lemma

A square matrix M with integer entries has an inverse M−1 also
with integer entries if and only if det(M) = ±1.

=⇒ : We need det(M) = ±1, otherwise det(M−1) = 1
det(M) won’t

be an integer (and M−1 can’t have all integer entries).

⇐= : There is a formula for M−1 in which the denominator is
det(M). E.g., for 3× 3 matrices,

M−1 =

a b c
d e f
g h i

−1 =
1

det(M)

 ei − fh ch − bi bf − ce
fg − di ai − cg cd − af
dh − eg bg − ah ae − bd
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Nitpicky little ideas

Why are we looking at determinants of all submatrices,
instead of just det(AB) for every B?

Because we have a system of inequalities Ax ≤ b, which gives us the

bigger system of equations Ax + I s = b. If we take k columns from A and

m − k columns from I to build AB, the determinant will equal the

determinant of a smaller k × k submatrix of A.

Why does the TU condition allow determinants to be 0 in
addition to ±1?

Not all choices of B are a valid basis: sometimes det(AB) = 0, and A−1
B

does not exist. But if this happens, that’s fine. If some basis B doesn’t

give any basic solution, in particular it does not give a fractional basic

solution.
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