Graphs that aren't bipartite 00

The Bipartite Matching Problem II Math 482, Lecture 22

Misha Lavrov

March 27, 2020

The dual problem: vertex covers 000

Graphs that aren't bipartite 00

Last time: bipartite matching LP

maximize	$x_{13} + x_{14} +$	$-x_{15} + x_{24}$	$+ x_{25}$
subject to	$x_{13} + x_{14} +$	- x ₁₅	≤ 1
		<i>x</i> ₂₄	$+x_{25} \leq 1$
	<i>x</i> ₁₃		≤ 1
	<i>x</i> ₁₄	$+ x_{24}$	≤ 1
		<i>x</i> ₁₅	$+x_{25} \leq 1$
	x_{13}, x_{14}, x_{15}	$x_{24}, x_{25} \ge$	≥ 0

The dual problem: vertex covers

Graphs that aren't bipartite 00

イロト イボト イヨト イヨト ヨー のくや

Last time: bipartite matching LP

• Variables: x_{ij} for every edge $(i, j) \in E$.

The dual problem: vertex covers

Graphs that aren't bipartite 00

Last time: bipartite matching LP

- $\begin{array}{lll} \text{maximize} & x_{13} + x_{14} + x_{15} + x_{24} + x_{25} \\ \text{subject to} & x_{13} + x_{14} + x_{15} & \leq 1 \\ & & x_{24} + x_{25} \leq 1 \\ & x_{13} & \leq 1 \\ & x_{14} & + x_{24} & \leq 1 \\ & & x_{15} & + x_{25} \leq 1 \\ & & x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0 \end{array}$
- Variables: x_{ij} for every edge $(i, j) \in E$.
- Maximize sum of all variables.

The dual problem: vertex covers

Graphs that aren't bipartite $\circ\circ$

イロト イボト イヨト イヨト ヨー のくや

Last time: bipartite matching LP

- $\begin{array}{lll} \text{maximize} & x_{13}+x_{14}+x_{15}+x_{24}+x_{25}\\ \text{subject to} & x_{13}+x_{14}+x_{15} & \leq 1\\ & & x_{24}+x_{25} \leq 1\\ & x_{13} & \leq 1\\ & x_{14} & +x_{24} & \leq 1\\ & & x_{15} & +x_{25} \leq 1\\ & & x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0 \end{array}$
- Variables: x_{ij} for every edge $(i, j) \in E$.
- Maximize sum of all variables.
- For every vertex $i \in X \cup Y$, sum of variables involving i is ≤ 1 .

Bipartite	incidence	matrices	are	ΤU
000000	0			

The dual problem: vertex covers

Graphs that aren't bipartite 00

Incidence matrix

maximize
$$x_{13} + x_{14} + x_{15} + x_{24} + x_{25}$$

subject to $\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{13} \\ x_{14} \\ x_{15} \\ x_{24} \\ x_{25} \end{bmatrix} \le \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \ge 0$

 In general, constraints are Ax ≤ 1.

Bipartite	incidence	matrices	are	ΤU
000000	0			

The dual problem: vertex covers

Graphs that aren't bipartite 00

Incidence matrix

- In general, constraints are $A\mathbf{x} \leq \mathbf{1}$.
- A has |X| + |Y| rows and |E| columns.

The dual problem: vertex covers 000

Graphs that aren't bipartite $\circ\circ$

Incidence matrix

$$\begin{array}{ll} \text{maximize} & x_{13} + x_{14} + x_{15} + x_{24} + x_{25} \\ \text{subject to} & \begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} x_{13} \\ x_{14} \\ x_{15} \\ x_{24} \\ x_{25} \end{bmatrix} \leq \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \\ x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0 \end{array}$$

- In general, constraints are $A\mathbf{x} \leq \mathbf{1}$.
- A has |X| + |Y| rows and |E| columns.
- A is the *incidence matrix* of the bipartite graph:

 $A_{v,e} = 1$ if vertex v is an endpoint of edge e, and 0 otherwise.

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Totally unimodular matrices

Previous lecture:

Definition

A matrix A is **totally unimodular** (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant -1, 0, or 1.

Theorem

If the $m \times n$ matrix A is TU and $\mathbf{b} \in \mathbb{R}^m$ is an integer vector, then all corner points of $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ have integer coordinates.

Totally unimodular matrices

Previous lecture:

Definition

A matrix A is **totally unimodular** (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant -1, 0, or 1.

Theorem

If the $m \times n$ matrix A is TU and $\mathbf{b} \in \mathbb{R}^m$ is an integer vector, then all corner points of $\{\mathbf{x} \in \mathbb{R}^n : A\mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\}$ have integer coordinates.

Today:

Theorem

The incidence matrix of a bipartite graph is totally unimodular.

The dual problem: vertex covers $_{\rm OOO}$

Graphs that aren't bipartite $_{\rm OO}$

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

Proof outline:

• Check k = 1: all entries of A are 0 or 1.

イロト イボト イヨト イヨト ヨー のくや

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.
 - B has a column of all zeroes:

イロト イボト イヨト イヨト ヨー のくや

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

Proof outline:

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.

• B has a column of all zeroes: det(B) = 0.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.
 - B has a column of all zeroes: det(B) = 0.
 - *B* has a column with only one 1:

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

Proof outline:

• Check k = 1: all entries of A are 0 or 1.

② For k > 1, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: det(B) = 0.
- B has a column with only one 1: simplify to $(k-1) \times (k-1)$.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.
 - B has a column of all zeroes: det(B) = 0.
 - B has a column with only one 1: simplify to $(k-1) \times (k-1)$.
 - All columns of *B* have two 1s:

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.
 - B has a column of all zeroes: det(B) = 0.
 - B has a column with only one 1: simplify to $(k-1) \times (k-1)$.
 - All columns of B have two 1s: det(B) = 0.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1 .

- Check k = 1: all entries of A are 0 or 1.
- **②** For k > 1, consider three cases of $k \times k$ submatrix B.
 - B has a column of all zeroes: det(B) = 0.
 - *B* has a column with only one 1: simplify to $(k-1) \times (k-1)$.
 - All columns of B have two 1s: det(B) = 0.
- **(3)** By induction on k, all submatrices have determinant 0 or ± 1 .

The dual problem: vertex covers

Graphs that aren't bipartite $\circ\circ$

Case 1: *B* has a column of all zeroes

Example:

Example:

The dual problem: vertex covers

Graphs that aren't bipartite $\circ\circ$

Case 1: *B* has a column of all zeroes

If B has a column of all zeroes, then the columns of B are linearly dependent. In that case, det(B) = 0.

The dual problem: vertex covers $_{\rm OOO}$

Graphs that aren't bipartite 00

Case 2: *B* has a column with only one 1

Example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \xrightarrow{\sim} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

The dual problem: vertex covers

Graphs that aren't bipartite 00

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへぐ

Case 2: *B* has a column with only one 1

Example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If B has a column with only one 1, expand det(B) along that column.

The dual problem: vertex covers

Graphs that aren't bipartite 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Case 2: *B* has a column with only one 1

Example:

$$\begin{bmatrix} 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

If B has a column with only one 1, expand det(B) along that column. Reduce to a smaller matrix:

$$\begin{vmatrix} \mathbf{1} & 1 & 1 \\ \mathbf{0} & 1 & 0 \\ \mathbf{0} & 0 & 1 \end{vmatrix} = \mathbf{1} \cdot \begin{vmatrix} \mathbf{1} & 0 \\ \mathbf{0} & 1 \end{vmatrix} - \mathbf{0} \cdot \begin{vmatrix} \mathbf{1} & 1 \\ \mathbf{0} & 1 \end{vmatrix} + \mathbf{0} \cdot \begin{vmatrix} \mathbf{1} & 1 \\ \mathbf{1} & 0 \end{vmatrix} = \begin{vmatrix} \mathbf{1} & 0 \\ \mathbf{0} & 1 \end{vmatrix}$$

The dual problem: vertex covers

Graphs that aren't bipartite $\circ\circ$

Case 3: All columns of B have two 1s

Example:

The dual problem: vertex covers

Graphs that aren't bipartite $\circ\circ$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Case 3: All columns of B have two 1s

Example:

In the final case, rows of B are linearly dependent:

- The rows coming from X add up to $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$.
- The rows coming from Y also add up to $\begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$. Therefore det(B) = 0.

Bipartite incidence matrices are TU	The dual problem: vertex covers	Graphs that aren't bipartite
0000000	●00	00
Taking the dual		

Bipartite incidence matrices are TU	The dual problem: vertex covers	Graphs that aren't bipartite
0000000	●00	00
Taking the dual		

 The primal problem has a ≤ constraint for every vertex. So, the dual has a variable y_i ≥ 0 for every i ∈ X ∪ Y.

Bipartite incidence matrices are TU 0000000	The dual problem: vertex covers ●00	Graphs that aren't bipartite
Taking the dual		

- The primal problem has a ≤ constraint for every vertex. So, the dual has a variable y_i ≥ 0 for every i ∈ X ∪ Y.
- The primal problem has a variable x_{ij} ≥ 0 for every edge. So, the dual has a ≥ constraint for every edge (i, j) ∈ E.

Bipartite incidence matrices are TU 0000000	The dual problem: vertex covers ●00	Graphs that aren't bipartite
Taking the dual		

- The primal problem has a ≤ constraint for every vertex. So, the dual has a variable y_i ≥ 0 for every i ∈ X ∪ Y.
- The primal problem has a variable x_{ij} ≥ 0 for every edge. So, the dual has a ≥ constraint for every edge (i, j) ∈ E.
- The primal LP is a maximization problem. So, the dual LP is a minimization problem: we minimize the sum of all the y_i.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Bipartite incidence matrices are TU	The dual problem: vertex covers	Graphs that aren't bipartite
0000000	●00	00
Taking the dual		

- The primal problem has a ≤ constraint for every vertex. So, the dual has a variable y_i ≥ 0 for every i ∈ X ∪ Y.
- The primal problem has a variable x_{ij} ≥ 0 for every edge. So, the dual has a ≥ constraint for every edge (i, j) ∈ E.
- The primal LP is a maximization problem. So, the dual LP is a minimization problem: we minimize the sum of all the y_i.
- The primal variable x_{ij} appears in constraints for vertices *i* and *j*. So, the dual constraint for (i, j) contains variables y_i and y_j : we get

$$y_i + y_j \ge 1$$
 for each $(i, j) \in E$

The dual problem: vertex covers 0 = 0

Graphs that aren't bipartite 00

▲□▶▲□▶▲□▶▲□▶ ■ のの()~

An example of the dual LP

The dual problem: vertex covers 0 = 0

Graphs that aren't bipartite 00

An example of the dual LP

Let's interpret the dual LP! Let S be the set of all i such that $y_i = 1$.

The dual problem: vertex covers 0 = 0

Graphs that aren't bipartite 00

イロト イボト イヨト イヨト ヨー のくや

An example of the dual LP

Let's interpret the dual LP! Let S be the set of all i such that $y_i = 1$.

• Want to minimize the size of S.

The dual problem: vertex covers 000

Graphs that aren't bipartite $\circ\circ$

An example of the dual LP

Let's interpret the dual LP! Let S be the set of all i such that $y_i = 1$.

- Want to minimize the size of S.
- For each $(i,j) \in E$, either $i \in S$ or $j \in S$ (or both).

Bipartite incidence matrices are TU 0000000	The dual problem: vertex covers 00●	Graphs that aren't bipartite
Vertex covers		

Definition

A vertex cover in a graph is a set of vertices S that includes at least one endpoint of every edge.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへぐ

Graphs that aren't bipartite 00

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Vertex covers

Definition

A vertex cover in a graph is a set of vertices S that includes at least one endpoint of every edge.

Theorem

In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.

Proof.

Linear programming duality.

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y.

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

• Vertices {*a*, *b*, *c*, *d*, *e*} and edges {*ab*, *bc*, *cd*, *de*, *ae*}.

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

• Vertices {*a*, *b*, *c*, *d*, *e*} and edges {*ab*, *bc*, *cd*, *de*, *ae*}.

• One largest matching: {*ab*, *cd*}.

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

- Vertices {*a*, *b*, *c*, *d*, *e*} and edges {*ab*, *bc*, *cd*, *de*, *ae*}.
- One largest matching: {*ab*, *cd*}.
- One smallest vertex cover: {*a*, *c*, *d*}.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Bipartite incidence matrices are TU 0000000	The dual problem: vertex covers	Graphs that aren't bipartite ○●
Strong duality fails!		

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

• Can still write down LPs for the largest matching and the smallest vertex cover.

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

- Can still write down LPs for the largest matching and the smallest vertex cover.
- These LPs are still dual and still have the same objective value.

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

- Can still write down LPs for the largest matching and the smallest vertex cover.
- These LPs are still dual and still have the same objective value.
- The constraint matrix is not totally unimodular! So the optimal solutions of the two LPs might be fractional, and not actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective value of 2.5.