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Last time: bipartite matching LP

M

o Variables: x;; for every edge (i,j) € E.

maximize

subject to

o Maximize sum of all variables.

X13 + X14 + X15 + Xo4 + Xo5

x13 + X14 + X15 <1
Xo4 + Xxo5 < 1

X13 <1
X14 + X4 <1

X15 + x5 <1

X13, X14, X15, X24, X25 > 0

o For every vertex i € XU Y, sum of variables involving i is < 1.
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Bipartite incidence matrices are TU
0@00000

Incidence matrix

o In general, constraints are

maximize  x13 + X14 + X15 + X24 + X25 Ax < 1.
11 1 0 0] [x3 17 @ Ahas |X|+ |Y] rows and
0 0 0 1 1f |xu 1 |E| columns.
subject to (1) (1) g 2 8 xis | < 1 o Ais the incidence matrix of
X24 R . .
00 1 0 1| |xs 1 the bipartite graph:

Ave =1 if vertex v is an
endpoint of edge e, and 0
otherwise.

X13, X14, X15, X24, X25 > 0
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Totally unimodular matrices

Previous lecture:

Definition

A matrix A is totally unimodular (TU for short) if every square
submatrix (any k rows and any k columns, not necessarily
consecutive, for all values of k) has determinant —1, 0, or 1.

| \

Theorem

If the m x n matrix A is TU and b € R™ is an integer vector, then
all corner points of {x € R" : Ax < b,x > 0} have integer
coordinates.
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Totally unimodular matrices

Previous lecture:

Definition

A matrix A is totally unimodular (TU for short) if every square
submatrix (any k rows and any k columns, not necessarily
consecutive, for all values of k) has determinant —1, 0, or 1.

| \

Theorem

If the m x n matrix A is TU and b € R™ is an integer vector, then
all corner points of {x € R" : Ax < b,x > 0} have integer
coordinates.

Today:

The incidence matrix of a bipartite graph is totally unimodular.
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each k, every square k x k submatrix has determinant 0 or £+1.

Proof outline:

@ Check k = 1: all entries of A are 0 or 1.
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Bipartite incidence matrices are TU
[e1e]eY Tolele}

The incidence matrix of a bipartite graph is totally unimodular: for
each k, every square k X k submatrix has determinant 0 or 1.

Proof outline:
O Check k = 1: all entries of A are 0 or 1.
@ For k > 1, consider three cases of k x k submatrix B.
o B has a column of all zeroes: det(B) = 0.
o B has a column with only one 1: simplify to (k — 1) x (k — 1).
o All columns of B have two 1s: det(B) = 0.

© By induction on k, all submatrices have determinant 0 or £1.
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If B has a column of all zeroes, then the columns of B are linearly
dependent. In that case, det(B) = 0.
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Bipartite incidence matrices are TU
00000e@0

Case 2: B has a column with only one 1

Example:
11 1 00
0 0011 111
10000 ~ 010
01010 0 01
00 101

If B has a column with only one 1, expand det(B) along that
column. Reduce to a smaller matrix:

10
01

11
01

10

o O =

1
1
0

= O =

11 10
=l ek el=l
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Case 3: All columns of B have two 1s

Example:

11100 1100
00011

0011
10 0 0 0] =~

1 010
01 0 10 01 0 1
00 101



Bipartite incidence matrices are TU
00000Oe

Case 3: All columns of B have two 1s

Example:

11100 1100
00011

0011
10 0 0 0] =~

1 010
01 0 10 01 0 1
00 101

In the final case, rows of B are linearly dependent:

o The rows coming from X add upto [1 1 --- 1].

o The rows coming from Y alsoadd upto [1 1 --- 1].
Therefore det(B) = 0.
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The dual problem: vertex covers
®00

What is the dual of the bipartite matching LP?

o The primal problem has a < constraint for every vertex. So,
the dual has a variable y; > 0 for every i € X U Y.

@ The primal problem has a variable x;; > 0 for every edge. So,
the dual has a > constraint for every edge (/,j) € E.

@ The primal LP is a maximization problem. So, the dual LP is
a minimization problem: we minimize the sum of all the y;.

o The primal variable x;; appears in constraints for vertices i/ and
J- So, the dual constraint for (i, ) contains variables y; and
yji we get

yi+yj>1 foreach (i,j) € E



The dual problem: vertex covers

oeo

An example of the dual LP

M

minimize

subject to

nntyr+y3styst+ys

n +y >1
n + Vs >1
n +ys>1
¥2 +ya >1
Y2 +ys>1

Y1,¥2,Y3,Y4, Y5 > 0
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The dual problem: vertex covers
oeo

An example of the dual LP

minimize  y1+y:+ys+yva+ys

:.L % subject to  y; + y3 >1

n +ya >1

n +ys2>1

Y2 + Ya >1

° ° ° + Z 1
3 a 5 Y2 Y5

Y1,¥2,Y3,Y4, Y5 > 0

Let's interpret the dual LP! Let S be the set of all / such that
yi=1

o Want to minimize the size of S.



The dual problem: vertex covers
oeo

An example of the dual LP

minimize  y1+y:+ys+yva+ys

:.L % subject to  y; + y3 >1

n +ya >1

n +ys2>1

Y2 + Ya >1

° ° ° + Z 1
3 a 5 Y2 Y5

Y1,¥2,Y3,Y4, Y5 > 0

Let's interpret the dual LP! Let S be the set of all / such that
yi=1

o Want to minimize the size of S.

o For each (i,j) € E, either i € S or j € S (or both).
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Vertex covers

Definition
A vertex cover in a graph is a set of vertices S that includes at
least one endpoint of every edge.




The dual problem: vertex covers
ooe

Vertex covers

A vertex cover in a graph is a set of vertices S that includes at
least one endpoint of every edge.

Theorem

| A\

In any bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum
vertex cover.

Linear programming duality.
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bipartite. Such a graph also has vertices and edges, but the
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Graphs that aren’t bipartite
[ 1o}

General graphs

We can look at both of these problems in graphs that are not
bipartite. Such a graph also has vertices and edges, but the
vertices don't have two types X and Y. For example:

¢
/ \ o Vertices {a, b, c,d, e} and
edges {ab, bc, cd, de, ae}.
d ° . b .
@ One largest matching:
{ab, cd}.
@ One smallest vertex cover:
{a,c,d}.
e a
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matching is smaller than the smallest vertex cover! What went
wrong?
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oe

For this non-bipartite graph, the theorem doesn’t work: the largest
matching is smaller than the smallest vertex cover! What went
wrong?

o Can still write down LPs for the largest matching and the
smallest vertex cover.

o These LPs are still dual and still have the same objective
value.

@ The constraint matrix is not totally unimodular! So the
optimal solutions of the two LPs might be fractional, and not
actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective
value of 2.5.
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