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Last time: bipartite matching LP

1 2

3 4 5

maximize x13 + x14 + x15 + x24 + x25

subject to x13 + x14 + x15 ≤ 1

x24 + x25 ≤ 1

x13 ≤ 1

x14 + x24 ≤ 1

x15 + x25 ≤ 1

x13, x14, x15, x24, x25 ≥ 0

Variables: xij for every edge (i , j) ∈ E .

Maximize sum of all variables.

For every vertex i ∈ X ∪Y , sum of variables involving i is ≤ 1.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Last time: bipartite matching LP

1 2

3 4 5

maximize x13 + x14 + x15 + x24 + x25

subject to x13 + x14 + x15 ≤ 1

x24 + x25 ≤ 1

x13 ≤ 1

x14 + x24 ≤ 1

x15 + x25 ≤ 1

x13, x14, x15, x24, x25 ≥ 0

Variables: xij for every edge (i , j) ∈ E .

Maximize sum of all variables.

For every vertex i ∈ X ∪Y , sum of variables involving i is ≤ 1.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Last time: bipartite matching LP

1 2

3 4 5

maximize x13 + x14 + x15 + x24 + x25

subject to x13 + x14 + x15 ≤ 1

x24 + x25 ≤ 1

x13 ≤ 1

x14 + x24 ≤ 1

x15 + x25 ≤ 1

x13, x14, x15, x24, x25 ≥ 0

Variables: xij for every edge (i , j) ∈ E .

Maximize sum of all variables.

For every vertex i ∈ X ∪Y , sum of variables involving i is ≤ 1.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Last time: bipartite matching LP

1 2

3 4 5

maximize x13 + x14 + x15 + x24 + x25

subject to x13 + x14 + x15 ≤ 1

x24 + x25 ≤ 1

x13 ≤ 1

x14 + x24 ≤ 1

x15 + x25 ≤ 1

x13, x14, x15, x24, x25 ≥ 0

Variables: xij for every edge (i , j) ∈ E .

Maximize sum of all variables.

For every vertex i ∈ X ∪Y , sum of variables involving i is ≤ 1.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Incidence matrix

maximize x13 + x14 + x15 + x24 + x25

subject to


1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1



x13
x14
x15
x24
x25

 ≤


1
1
1
1
1


x13, x14, x15, x24, x25 ≥ 0

In general, constraints are
Ax ≤ 1.

A has |X |+ |Y | rows and
|E | columns.
A is the incidence matrix of
the bipartite graph:
Av ,e = 1 if vertex v is an
endpoint of edge e, and 0
otherwise.
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Totally unimodular matrices

Previous lecture:

Definition

A matrix A is totally unimodular (TU for short) if every square
submatrix (any k rows and any k columns, not necessarily
consecutive, for all values of k) has determinant −1, 0, or 1.

Theorem

If the m × n matrix A is TU and b ∈ Rm is an integer vector, then
all corner points of {x ∈ Rn : Ax ≤ b, x ≥ 0} have integer
coordinates.

Today:

Theorem

The incidence matrix of a bipartite graph is totally unimodular.
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Theorem

The incidence matrix of a bipartite graph is totally unimodular: for
each k, every square k × k submatrix has determinant 0 or ±1.

Proof outline:

1 Check k = 1: all entries of A are 0 or 1.

2 For k > 1, consider three cases of k × k submatrix B.

B has a column of all zeroes: det(B) = 0.

B has a column with only one 1: simplify to (k − 1)× (k − 1).

All columns of B have two 1s: det(B) = 0.

3 By induction on k , all submatrices have determinant 0 or ±1.
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Case 1: B has a column of all zeroes

Example: 
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

  

1 1 0
1 0 0
0 0 0



If B has a column of all zeroes, then the columns of B are linearly
dependent. In that case, det(B) = 0.
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Case 2: B has a column with only one 1

Example: 
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

  

1 1 1
0 1 0
0 0 1



If B has a column with only one 1, expand det(B) along that
column. Reduce to a smaller matrix:∣∣∣∣∣∣

1 1 1
0 1 0
0 0 1

∣∣∣∣∣∣ = 1 ·
∣∣∣∣1 0
0 1

∣∣∣∣− 0 ·
∣∣∣∣1 1
0 1

∣∣∣∣+ 0 ·
∣∣∣∣1 1
1 0

∣∣∣∣ =

∣∣∣∣1 0
0 1

∣∣∣∣
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Case 3: All columns of B have two 1s

Example: 
1 1 1 0 0
0 0 0 1 1
1 0 0 0 0
0 1 0 1 0
0 0 1 0 1

  


1 1 0 0
0 0 1 1
1 0 1 0
0 1 0 1



In the final case, rows of B are linearly dependent:

The rows coming from X add up to
[
1 1 · · · 1

]
.

The rows coming from Y also add up to
[
1 1 · · · 1

]
.

Therefore det(B) = 0.
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Taking the dual

What is the dual of the bipartite matching LP?

The primal problem has a ≤ constraint for every vertex. So,
the dual has a variable yi ≥ 0 for every i ∈ X ∪ Y .

The primal problem has a variable xij ≥ 0 for every edge. So,
the dual has a ≥ constraint for every edge (i , j) ∈ E .

The primal LP is a maximization problem. So, the dual LP is
a minimization problem: we minimize the sum of all the yi .

The primal variable xij appears in constraints for vertices i and
j . So, the dual constraint for (i , j) contains variables yi and
yj : we get

yi + yj ≥ 1 for each (i , j) ∈ E
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An example of the dual LP

1 2

3 4 5

minimize y1 + y2 + y3 + y4 + y5

subject to y1 + y3 ≥ 1

y1 + y4 ≥ 1

y1 + y5 ≥ 1

y2 + y4 ≥ 1

y2 + y5 ≥ 1

y1, y2, y3, y4, y5 ≥ 0

Let’s interpret the dual LP! Let S be the set of all i such that
yi = 1.

Want to minimize the size of S .

For each (i , j) ∈ E , either i ∈ S or j ∈ S (or both).
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Vertex covers

Definition

A vertex cover in a graph is a set of vertices S that includes at
least one endpoint of every edge.

Theorem

In any bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum
vertex cover.

Proof.

Linear programming duality.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Vertex covers

Definition

A vertex cover in a graph is a set of vertices S that includes at
least one endpoint of every edge.

Theorem

In any bipartite graph, the number of edges in a maximum
matching is equal to the number of vertices in a minimum
vertex cover.

Proof.

Linear programming duality.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

General graphs

We can look at both of these problems in graphs that are not
bipartite. Such a graph also has vertices and edges, but the
vertices don’t have two types X and Y .

For example:

a

b

c

d

e

Vertices {a, b, c , d , e} and
edges {ab, bc, cd , de, ae}.
One largest matching:
{ab, cd}.
One smallest vertex cover:
{a, c , d}.
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Strong duality fails!

For this non-bipartite graph, the theorem doesn’t work: the largest
matching is smaller than the smallest vertex cover! What went
wrong?

Can still write down LPs for the largest matching and the
smallest vertex cover.

These LPs are still dual and still have the same objective
value.

The constraint matrix is not totally unimodular! So the
optimal solutions of the two LPs might be fractional, and not
actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective
value of 2.5.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Strong duality fails!

For this non-bipartite graph, the theorem doesn’t work: the largest
matching is smaller than the smallest vertex cover! What went
wrong?

Can still write down LPs for the largest matching and the
smallest vertex cover.

These LPs are still dual and still have the same objective
value.

The constraint matrix is not totally unimodular! So the
optimal solutions of the two LPs might be fractional, and not
actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective
value of 2.5.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Strong duality fails!

For this non-bipartite graph, the theorem doesn’t work: the largest
matching is smaller than the smallest vertex cover! What went
wrong?

Can still write down LPs for the largest matching and the
smallest vertex cover.

These LPs are still dual and still have the same objective
value.

The constraint matrix is not totally unimodular! So the
optimal solutions of the two LPs might be fractional, and not
actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective
value of 2.5.



Bipartite incidence matrices are TU The dual problem: vertex covers Graphs that aren’t bipartite

Strong duality fails!

For this non-bipartite graph, the theorem doesn’t work: the largest
matching is smaller than the smallest vertex cover! What went
wrong?

Can still write down LPs for the largest matching and the
smallest vertex cover.

These LPs are still dual and still have the same objective
value.

The constraint matrix is not totally unimodular! So the
optimal solutions of the two LPs might be fractional, and not
actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective
value of 2.5.


	Bipartite incidence matrices are TU
	The dual problem: vertex covers
	Graphs that aren't bipartite

