The Bipartite Matching Problem II Math 482, Lecture 22

Misha Lavrov

March 27, 2020

Last time: bipartite matching LP

maximize $\quad x_{13}+x_{14}+x_{15}+x_{24}+x_{25}$	
subject to $\quad x_{13}+x_{14}+x_{15}$	≤ 1
	$x_{24}+x_{25}$

Last time: bipartite matching LP

- Variables: $x_{i j}$ for every edge $(i, j) \in E$.

Last time: bipartite matching LP

- Variables: $x_{i j}$ for every edge $(i, j) \in E$.
- Maximize sum of all variables.

Last time: bipartite matching LP

maximize	$x_{13}+x_{14}+x_{15}+x_{24}+x_{25}$
subject to	
$x_{13}+x_{14}+x_{15}$	≤ 1
	$x_{24}+x_{25}$

- Variables: $x_{i j}$ for every edge $(i, j) \in E$.
- Maximize sum of all variables.
- For every vertex $i \in X \cup Y$, sum of variables involving i is ≤ 1.

Incidence matrix

maximize $\quad x_{13}+x_{14}+x_{15}+x_{24}+x_{25}$
subject to $\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{13} \\ x_{14} \\ x_{15} \\ x_{24} \\ x_{25}\end{array}\right] \leq\left[\begin{array}{c}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
$x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0$

- In general, constraints are $A x \leq 1$.

Incidence matrix

maximize $\quad x_{13}+x_{14}+x_{15}+x_{24}+x_{25}$
subject to $\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{l}x_{13} \\ x_{14} \\ x_{15} \\ x_{24} \\ x_{25}\end{array}\right] \leq\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$
$x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0$

- In general, constraints are $A \mathrm{x} \leq 1$.
- A has $|X|+|Y|$ rows and $|E|$ columns.

Incidence matrix

maximize $\quad x_{13}+x_{14}+x_{15}+x_{24}+x_{25}$
subject to $\left[\begin{array}{lllll}1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{13} \\ x_{14} \\ x_{15} \\ x_{24} \\ x_{25}\end{array}\right] \leq\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

$x_{13}, x_{14}, x_{15}, x_{24}, x_{25} \geq 0$

- In general, constraints are $A \mathrm{x} \leq 1$.
- A has $|X|+|Y|$ rows and $|E|$ columns.
- A is the incidence matrix of the bipartite graph: $A_{v, e}=1$ if vertex v is an endpoint of edge e, and 0 otherwise.

Totally unimodular matrices

Previous lecture:

Definition

A matrix A is totally unimodular (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant $-1,0$, or 1 .

Theorem

If the $m \times n$ matrix A is $T U$ and $\mathbf{b} \in \mathbb{R}^{m}$ is an integer vector, then all corner points of $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ have integer coordinates.

Totally unimodular matrices

Previous lecture:

Definition

A matrix A is totally unimodular (TU for short) if every square submatrix (any k rows and any k columns, not necessarily consecutive, for all values of k) has determinant $-1,0$, or 1 .

Theorem

If the $m \times n$ matrix A is $T U$ and $\mathbf{b} \in \mathbb{R}^{m}$ is an integer vector, then all corner points of $\left\{\mathbf{x} \in \mathbb{R}^{n}: A \mathbf{x} \leq \mathbf{b}, \mathbf{x} \geq \mathbf{0}\right\}$ have integer coordinates.

Today:

Theorem

The incidence matrix of a bipartite graph is totally unimodular.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes:

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.
- B has a column with only one 1 :

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.
- B has a column with only one 1 : simplify to $(k-1) \times(k-1)$.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.
- B has a column with only one 1 : simplify to $(k-1) \times(k-1)$.
- All columns of B have two 1 s :

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.
- B has a column with only one 1 : simplify to $(k-1) \times(k-1)$.
- All columns of B have two $1 \mathrm{~s}: \operatorname{det}(B)=0$.

Theorem

The incidence matrix of a bipartite graph is totally unimodular: for each k, every square $k \times k$ submatrix has determinant 0 or ± 1.

Proof outline:
(1) Check $k=1$: all entries of A are 0 or 1 .
(2) For $k>1$, consider three cases of $k \times k$ submatrix B.

- B has a column of all zeroes: $\operatorname{det}(B)=0$.
- B has a column with only one 1 : simplify to $(k-1) \times(k-1)$.
- All columns of B have two $1 \mathrm{~s}: \operatorname{det}(B)=0$.
(3) By induction on k, all submatrices have determinant 0 or ± 1.

Case 1: B has a column of all zeroes

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Case 1: B has a column of all zeroes

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

If B has a column of all zeroes, then the columns of B are linearly dependent. In that case, $\operatorname{det}(B)=0$.

Case 2: B has a column with only one 1

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Case 2: B has a column with only one 1

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If B has a column with only one 1 , expand $\operatorname{det}(B)$ along that column.

Case 2: B has a column with only one 1

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

If B has a column with only one 1 , expand $\operatorname{det}(B)$ along that column. Reduce to a smaller matrix:

$$
\left|\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right|=1 \cdot\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|-0 \cdot\left|\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right|+0 \cdot\left|\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right|=\left|\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right|
$$

Case 3: All columns of B have two 1 s

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

Case 3: All columns of B have two 1 s

Example:

$$
\left[\begin{array}{lllll}
1 & 1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 1 \\
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right]
$$

In the final case, rows of B are linearly dependent:

- The rows coming from X add up to $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$.
- The rows coming from Y also add up to $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$.

Therefore $\operatorname{det}(B)=0$.

Taking the dual

What is the dual of the bipartite matching LP?

Taking the dual

What is the dual of the bipartite matching LP?

- The primal problem has a \leq constraint for every vertex. So, the dual has a variable $y_{i} \geq 0$ for every $i \in X \cup Y$.

Taking the dual

What is the dual of the bipartite matching LP?

- The primal problem has a \leq constraint for every vertex. So, the dual has a variable $y_{i} \geq 0$ for every $i \in X \cup Y$.
- The primal problem has a variable $x_{i j} \geq 0$ for every edge. So, the dual has a \geq constraint for every edge $(i, j) \in E$.

Taking the dual

What is the dual of the bipartite matching LP?

- The primal problem has a \leq constraint for every vertex. So, the dual has a variable $y_{i} \geq 0$ for every $i \in X \cup Y$.
- The primal problem has a variable $x_{i j} \geq 0$ for every edge. So, the dual has a \geq constraint for every edge $(i, j) \in E$.
- The primal LP is a maximization problem. So, the dual LP is a minimization problem: we minimize the sum of all the y_{i}.

Taking the dual

What is the dual of the bipartite matching LP?

- The primal problem has a \leq constraint for every vertex. So, the dual has a variable $y_{i} \geq 0$ for every $i \in X \cup Y$.
- The primal problem has a variable $x_{i j} \geq 0$ for every edge. So, the dual has a \geq constraint for every edge $(i, j) \in E$.
- The primal LP is a maximization problem. So, the dual LP is a minimization problem: we minimize the sum of all the y_{i}.
- The primal variable $x_{i j}$ appears in constraints for vertices i and j. So, the dual constraint for (i, j) contains variables y_{i} and y_{j} : we get

$$
y_{i}+y_{j} \geq 1 \quad \text { for each }(i, j) \in E
$$

An example of the dual LP

$$
\begin{aligned}
& \text { minimize } \quad y_{1}+y_{2}+y_{3}+y_{4}+y_{5} \\
& \text { subject to } y_{1} \quad+y_{3} \quad \geq 1 \\
& y_{1} \quad+y_{4} \geq 1 \\
& y \\
& +y_{5} \geq 1 \\
& y_{2} \quad+y_{4} \geq 1 \\
& y_{2} \\
& +y_{5} \geq 1 \\
& y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geq 0
\end{aligned}
$$

An example of the dual LP

$$
y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geq 0
$$

$$
\begin{aligned}
& \text { minimize } \quad y_{1}+y_{2}+y_{3}+y_{4}+y_{5} \\
& \text { subject to } \begin{array}{llll}
y_{1} & +y_{3} & \geq 1 \\
y_{1} & & +y_{4} & \geq 1 \\
y_{1} & & +y_{5} & \geq 1 \\
& y_{2} & +y_{4} & \geq 1 \\
& y_{2} & +y_{5} & \geq 1
\end{array}
\end{aligned}
$$

Let's interpret the dual LP! Let S be the set of all i such that $y_{i}=1$.

An example of the dual LP

$$
\operatorname{minimize} \quad y_{1}+y_{2}+y_{3}+y_{4}+y_{5}
$$

$y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geq 0$

Let's interpret the dual LP! Let S be the set of all i such that $y_{i}=1$.

- Want to minimize the size of S.

An example of the dual LP

$$
\begin{aligned}
& \text { minimize } \quad y_{1}+y_{2}+y_{3}+y_{4}+y_{5} \\
& y_{1}, y_{2}, y_{3}, y_{4}, y_{5} \geq 0
\end{aligned}
$$

Let's interpret the dual LP! Let S be the set of all i such that $y_{i}=1$.

- Want to minimize the size of S.
- For each $(i, j) \in E$, either $i \in S$ or $j \in S$ (or both).

Vertex covers

Definition

A vertex cover in a graph is a set of vertices S that includes at least one endpoint of every edge.

Vertex covers

Definition

A vertex cover in a graph is a set of vertices S that includes at least one endpoint of every edge.

Theorem

In any bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum vertex cover.

Proof.

Linear programming duality.

General graphs

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y.

General graphs

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

- Vertices $\{a, b, c, d, e\}$ and edges $\{a b, b c, c d, d e, a e\}$.

General graphs

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

- Vertices $\{a, b, c, d, e\}$ and edges $\{a b, b c, c d, d e, a e\}$.
- One largest matching: $\{a b, c d\}$.

General graphs

We can look at both of these problems in graphs that are not bipartite. Such a graph also has vertices and edges, but the vertices don't have two types X and Y. For example:

- Vertices $\{a, b, c, d, e\}$ and edges $\{a b, b c, c d, d e, a e\}$.
- One largest matching: $\{a b, c d\}$.
- One smallest vertex cover: $\{a, c, d\}$.

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

- Can still write down LPs for the largest matching and the smallest vertex cover.

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

- Can still write down LPs for the largest matching and the smallest vertex cover.
- These LPs are still dual and still have the same objective value.

Strong duality fails!

For this non-bipartite graph, the theorem doesn't work: the largest matching is smaller than the smallest vertex cover! What went wrong?

- Can still write down LPs for the largest matching and the smallest vertex cover.
- These LPs are still dual and still have the same objective value.
- The constraint matrix is not totally unimodular! So the optimal solutions of the two LPs might be fractional, and not actually give a matching or a vertex cover!

In the example on the last slide: both LPs have an objective value of 2.5 .

