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Network Flows Upper bounds on flow

Definition of a network
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A set N of nodes. Here, N = {s, 1, 2, 3, 4, t}.

Node s is the source and node t is the sink.

A set A of arcs: pairs of nodes. In this example,

A = {(s, 1), (s, 2), (1, 2), (2, 3), (3, 1), (3, 4), (3, t), (4, 1)}.

A nonnegative real capacity cij on each arc (i , j).

Here, cs1 = 1, c12 = 3, and so on.
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Definition of a network flow, I

A flow x assigns a number xij to each arc (i , j) ∈ A.
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We write “p/q” on an arc (i , j) with flow xij = p and capacity
cij = q.

A flow represents stuff moving from s to t; xij is the amount
of stuff moving along arc (i , j).

For this to make sense, we want to add some constraints on x
for it to be a feasible flow.
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Definition of a network flow, II

Constraints on a feasible flow:

Capacity constraints: for every arc (i , j) ∈ A, xij ≤ cij .

Nonnegativity constraints: x ≥ 0.

Flow conservation: at every node k ∈ N except for s and t,
the total flow going in is equal to the total flow going out.
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At node k = 2, we must have xs2 + x12 = x23. Here,
1 + 1 = 2.
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More on flow conservation

The excess at a node k is the difference between the total flow
into k and the total flow out of k :

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

Flow conservation: at every node k 6= s, t, ∆k(x) = 0.

At the sink t, the excess ∆t(x) represents the amount of stuff
we’ve successfully brought to t from s. This is called the value of x.

We can prove that ∆s(x) = −∆t(x): the amount of gain at t is
equal to the amount of loss at s. (This should follow from flow
conservation.)
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The maximum flow LP

The maximum flow problem to find the feasible flow in a network
with the maximum value can be written as a linear program:

maximize
x∈R|A|

∑
i :(i ,t)∈A

xit −
∑

j :(t,j)∈A

xtj

subject to
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj = 0 (k ∈ N, k 6= s, t)

xij ≤ cij (i , j) ∈ A

x ≥ 0

We can assume there are no arcs into s or out of t. In that case,

value of x =
∑

i :(i ,t)∈A

xit =
∑

j :(s,j)∈A

xsj .
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How can we tell if a flow is optimal?

The flow in the example below has a value of 7. Can we do better?
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No; the arcs out of s are all at their maximum capacity. We can’t
send more than 7 flow out of s.
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We can’t send more than 7 flow from {s, b} to {a, t}.
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Cuts

Definition

An cut in a network is a partition of the node set N into two sets
S and T , such that s ∈ S and t ∈ T .

The capacity of a cut (S ,T ) is the sum
∑
i∈S

∑
j∈T

cij .

(If (i , j) /∈ A, we say that cij = 0.)
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Here, S = {s, b}, T = {a, t}, and the capacity is csa + cbt = 7.
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Cuts are upper bounds on flows

Theorem

If a feasible flow x has value v(x), and a cut (S ,T ) has capacity
c(S ,T ), then

v(x) ≤ c(S ,T ).

Proof idea: consider the sum

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik


By computing this sum in two ways, we show that it is equal to
v(x), and also that it is at most c(S ,T ).
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Step 1

In the sum ∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik


the difference (in orange) is the net flow out of k . When k 6= s, it
is 0. When k = s, it is the value of the flow.

Therefore

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 =
∑

j :(s,j)∈A

xsj −
∑

i :(i ,s)∈A

xis = v(x).
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Step 2

How many times, and with what sign, does xij appear in the sum

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

?

Once, with + sign, if i ∈ S .

Once, with − sign, if j ∈ S .

Therefore

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 =
∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij .



Network Flows Upper bounds on flow

Step 2

How many times, and with what sign, does xij appear in the sum

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

?

Once, with + sign, if i ∈ S .

Once, with − sign, if j ∈ S .

Therefore

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 =
∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij .



Network Flows Upper bounds on flow

Step 2

How many times, and with what sign, does xij appear in the sum

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

?

Once, with + sign, if i ∈ S .

Once, with − sign, if j ∈ S .

Therefore

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 =
∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij .



Network Flows Upper bounds on flow

Step 2, continued

∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 =
∑
i∈S

∑
j∈T

xij −
∑
i∈T

∑
j∈S

xij .

For the sum in red, use xij ≤ cij :∑
i∈S

∑
j∈T

xij ≤
∑
i∈S

∑
j∈T

cij = c(S ,T ).

The sum in blue is ≥ 0, so for an upper bound, we can ignore it.

We conclude that

v(x) =
∑
k∈S

 ∑
j :(k,j)∈A

xkj −
∑

i :(i ,k)∈A

xik

 ≤ c(S ,T ).
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