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The max-flow min-cut theorem

Last time, we proved that for any network:

Theorem

If x is a feasible flow, and (S ,T ) is a cut, then

v(x) ≤ c(S ,T ) :

the value of x is at most the capacity of (S ,T ).

The plan for today is to prove, additionally:

Theorem

If x is a maximum flow and (S ,T ) is a minimum cut (x maximizes
v(x) and (S ,T ) minimizes c(S ,T )), then

v(x) = c(S ,T ).



Lecture plan Taking the dual All optimal dual solutions are cuts

The max-flow min-cut theorem

Last time, we proved that for any network:

Theorem

If x is a feasible flow, and (S ,T ) is a cut, then

v(x) ≤ c(S ,T ) :

the value of x is at most the capacity of (S ,T ).

The plan for today is to prove, additionally:

Theorem

If x is a maximum flow and (S ,T ) is a minimum cut (x maximizes
v(x) and (S ,T ) minimizes c(S ,T )), then

v(x) = c(S ,T ).



Lecture plan Taking the dual All optimal dual solutions are cuts

Proof ingredients

What we proved last time was the “weak duality” version.
What we’re proving is analogous to “strong duality”.

Step 1: We will show that the duality between flows and cuts
is exactly LP duality. That is, we’ll take the dual of the
max-flow problem, and show that it is the min-cut problem.

Step 2: For flows, there are no problems with integrality. But
cuts will correspond to integer solutions of the dual LP.

We will prove that this is not a problem by showing that the
constraint matrix is TU.
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The maximum flow LP

Last time, we wrote down the LP for maximum flow:

maximize
x

∑
j :(s,j)∈A

xsj

subject to
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj = 0 (k ∈ N, k 6= s, t)

xij ≤ cij (i , j) ∈ A

x ≥ 0

(We assume there are no arcs into s or out of t.)

We see that the dual will have:

A dual variable uk for each node k ∈ N other than s, t.

A dual variable yij for each arc (i , j) ∈ A.
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The dual LP

maximize
x

∑
j :(s,j)∈A

xsj

subject to
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj = 0 (uk)

xij ≤ cij (yij)

x ≥ 0

minimize
u,y

∑
(i ,j)∈A

cijyij

subject to −ui + uj + yij ≥ 0 (xij , i 6= s, j 6= t)

uj + ysj ≥ 1 (xsj)

−ui + yit ≥ 0 (xit)

y ≥ 0,u unrestricted
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Simplifying the dual LP

The dual constraints all have nearly the same form, except for
constraints corresponding to nodes s and t:

−ui + uj + yij ≥ 0 most arcs (i , j)

uj + ysj ≥ 1 arcs (s, j)

−ui + yit ≥ 0 arcs (i , t)

We add “fake variables” us , ut fixed to have us = 1 and ut = 0.

This gives us a simpler set of constraints:

us = 1

ut = 0
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The dual LP as a minimax problem

Our current dual LP:

minimize
u,y

∑
(i ,j)∈A

cijyij

subject to yij ≥ ui − uj (i , j) ∈ A

us = 1, ut = 0

y ≥ 0,u unrestricted

The only constraints on yij are lower bounds: yij ≥ ui − uj and
yij ≥ 0. We can replace yij by max{0, ui − uj}:

minimize
u

∑
(i ,j)∈A

cij ·max{0, ui − uj}

subject to us = 1, ut = 0.
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Cuts are feasible solutions

Our current dual LP:

minimize
u

∑
(i ,j)∈A

cij ·max{0, ui − uj}

subject to us = 1, ut = 0.

We can use a cut (S ,T ) to get a feasible solution!

Set uk = 1 if k ∈ S and uk = 0 if k ∈ T .

We know s ∈ S and t ∈ T , so this satisfies the constraints.

We have max{0, ui − uj} = 1 if i ∈ S , j ∈ T and 0 otherwise.

So the objective function is exactly
∑

i∈S
∑

j∈T cij = c(S ,T ).

Will all optimal solutions have this form?
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Finishing the proof

Our goal is to show that all optimal solutions to the dual LP
correspond to cuts. This will complete the proof of min-cut
max-flow by strong LP duality.

Things we have left to check:

In any optimal solution, uk ∈ Z for all nodes k .

(Total unimodularity)

In any optimal solution, uk ∈ [0, 1] for all nodes k .

(This is what we will do next.)
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Showing that uk ∈ [0, 1]

Lemma

The linear program

minimize
u

∑
(i ,j)∈A

cij ·max{0, ui − uj}

subject to us = 1, ut = 0

has an optimal solution u in which 0 ≤ uk ≤ 1 for all k .

To prove this, take an optimal solution u.

Replace each uk by max{0,min{1, uk}}, “clipping” uk to [0, 1].

Want to show: when we do this, max{0, ui − uj} never increases.
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Casework

What happens to max{0, ui − uj} when we clip ui , uj to [0, 1]?

Suppose ui ≤ uj :

Then max{0, ui − uj} stays 0.

Suppose ui > uj both > 1 or both < 0:

Then max{0, ui − uj} goes from positive to 0.

Suppose ui > 1:

Then ui − uj decreases by (1− ui ).

Suppose uj < 0:

Then ui − uj decreases by |uj |.

Finally, if 0 ≤ uj < ui ≤ 1, nothing changes.
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Total unimodularity

Lemma

The constraint matrix of

minimize
u,y

∑
(i ,j)∈A

cijyij

subject to yij ≥ ui − uj (i , j) ∈ A

us = 1, ut = 0

y ≥ 0,u unrestricted

is totally unimodular.

1 Check 1× 1 matrices.

2 Check matrices with a column with ≤ 1 nonzero entry.

3 Deal with exceptional cases.
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Total unimodularity example

s

a

b

t

3

7

3

5

4

Constraints:

ysa − us + ua ≥ 0

ysb − us + ub ≥ 0

yab − ua + ub ≥ 0

yat − ua + ut ≥ 0

ybt − ub + ut ≥ 0
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Total unimodularity example

s

a

b

t

3

7

3

5

4

Constraints:
1 0 0 0 0 −1 1 0 0
0 1 0 0 0 −1 0 1 0
0 0 1 0 0 0 −1 1 0
0 0 0 1 0 0 −1 0 1
0 0 0 0 1 0 0 −1 1


[

y
u

]
≥


0
0
0
0
0
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Exceptional case

Only kind of submatrix that has no row or column with ≤ 1
nonzero entry:

1 0 0 0 0 −1 1 0 0
0 1 0 0 0 −1 0 1 0
0 0 1 0 0 0 −1 1 0
0 0 0 1 0 0 −1 0 1
0 0 0 0 1 0 0 −1 1

 
−1 1 0
−1 0 1
0 −1 1



In general: this happens if, whenever we pick the row for arc (i , j),
we pick both the ui and uj columns.

In this case, the determinant is 0: the columns add to 0, so they
are linearly dependent.

This completes the proof of the min-cut max-flow theorem.
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