The Max-Flow Min-Cut Theorem Math 482, Lecture 24

Misha Lavrov

April 1, 2020

The max-flow min-cut theorem

Last time, we proved that for any network:
Theorem
If \mathbf{x} is a feasible flow, and (S, T) is a cut, then

$$
v(\mathbf{x}) \leq c(S, T):
$$

the value of \mathbf{x} is at most the capacity of (S, T).

The max-flow min-cut theorem

Last time, we proved that for any network:

Theorem

If \mathbf{x} is a feasible flow, and (S, T) is a cut, then

$$
v(\mathbf{x}) \leq c(S, T):
$$

the value of \mathbf{x} is at most the capacity of (S, T).

The plan for today is to prove, additionally:

Theorem

If \mathbf{x} is a maximum flow and (S, T) is a minimum cut (\mathbf{x} maximizes $v(\mathbf{x})$ and (S, T) minimizes $c(S, T)$), then

$$
v(\mathbf{x})=c(S, T)
$$

Proof ingredients

- What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".

Proof ingredients

- What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".
- Step 1: We will show that the duality between flows and cuts is exactly LP duality. That is, we'll take the dual of the max-flow problem, and show that it is the min-cut problem.

Proof ingredients

- What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".
- Step 1: We will show that the duality between flows and cuts is exactly LP duality. That is, we'll take the dual of the max-flow problem, and show that it is the min-cut problem.
- Step 2: For flows, there are no problems with integrality. But cuts will correspond to integer solutions of the dual LP.

We will prove that this is not a problem by showing that the constraint matrix is TU.

The maximum flow LP

Last time, we wrote down the LP for maximum flow:

$$
\begin{array}{lll}
\underset{\mathbf{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad(k \in N, k \neq s, t) \\
& x_{i j} \leq c_{i j} & (i, j) \in A \\
& \mathbf{x} \geq \mathbf{0} &
\end{array}
$$

The maximum flow LP

Last time, we wrote down the LP for maximum flow:

$$
\begin{array}{lll}
\underset{\mathbf{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad(k \in N, k \neq s, t) \\
& x_{i j} \leq c_{i j} & (i, j) \in A \\
& \mathbf{x} \geq \mathbf{0} &
\end{array}
$$

(We assume there are no arcs into s or out of t.)
We see that the dual will have:

- A dual variable u_{k} for each node $k \in N$ other than s, t.

The maximum flow LP

Last time, we wrote down the LP for maximum flow:

$$
\begin{array}{lll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad(k \in N, k \neq s, t) \\
& x_{i j} \leq c_{i j} & (i, j) \in A \\
& \mathbf{x} \geq \mathbf{0} &
\end{array}
$$

(We assume there are no arcs into s or out of t.)
We see that the dual will have:

- A dual variable u_{k} for each node $k \in N$ other than s, t.
- A dual variable $y_{i j}$ for each $\operatorname{arc}(i, j) \in A$.

The dual LP

$$
\begin{aligned}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \\
& \mathbf{x} \geq \mathbf{0}
\end{aligned}
$$

The dual LP

$$
\begin{array}{ll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

minimize
 \mathbf{u}, \mathbf{y}
 $\sum_{(i, j) \in A} c_{i j} y_{i j}$

The dual LP

$$
\begin{array}{ll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \tag{ij}\\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

$\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} \sum_{(i, j) \in A} c_{i j} y_{i j}$
subject to $\quad-u_{i}+u_{j}+y_{i j} \geq 0 \quad\left(x_{i j}, i \neq s, j \neq t\right)$

The dual LP

$$
\begin{array}{ll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \tag{ij}\\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

$$
\begin{array}{rr}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & -u_{i}+u_{j}+y_{i j} \geq 0 \\
& u_{j}+y_{s j} \geq 1
\end{array} \quad\left(x_{i j}, i \neq s, j \neq t\right)
$$

The dual LP

$$
\begin{array}{ll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \tag{ij}\\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

$$
\begin{array}{rrr}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & -u_{i}+u_{j}+y_{i j} \geq 0 \\
& u_{j}+y_{s j} \geq 1 \\
& -u_{i}+y_{i t} \geq 0 & \left(x_{i j}, i \neq s, j \neq t\right) \\
& \left(x_{s j}\right) \\
& \left(x_{i t}\right)
\end{array}
$$

The dual LP

$$
\begin{array}{ll}
\underset{\mathrm{x}}{\operatorname{maximize}} & \sum_{j:(s, j) \in A} x_{s j} \\
\text { subject to } & \sum_{i:(i, k) \in A} x_{i k}-\sum_{j:(k, j) \in A} x_{k j}=0 \quad\left(u_{k}\right) \\
& x_{i j} \leq c_{i j} \tag{ij}\\
& \mathbf{x} \geq \mathbf{0}
\end{array}
$$

$\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} \sum_{(i, j) \in A} c_{i j} y_{i j}$

subject to $\quad-u_{i}+u_{j}+y_{i j} \geq 0 \quad\left(x_{i j}, i \neq s, j \neq t\right)$

$$
\begin{array}{rrr}
u_{j}+y_{s j} & \geq 1 & \left(x_{s j}\right) \\
-u_{i} & +y_{i t} \geq 0 & \left(x_{i t}\right)
\end{array}
$$

$\mathbf{y} \geq \mathbf{0}, \mathbf{u}$ unrestricted

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t :

$$
\begin{aligned}
-u_{i}+u_{j}+y_{i j} & \geq 0 \\
u_{j}+y_{s j} & \geq 1 \\
-u_{i} \quad+y_{i t} & \geq 0
\end{aligned}
$$

```
most arcs (i,j)
    arcs (s,j)
    arcs (i,t)
```


Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t :

$$
\begin{array}{rr}
-u_{i}+u_{j}+y_{i j} \geq 0 & \text { most } \operatorname{arcs}(i, j) \\
-1+u_{j}+y_{s j} \geq 0 & \operatorname{arcs}(s, j) \\
-u_{i}+y_{i t} & \geq 0
\end{array}
$$

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t :

$$
\begin{array}{rr}
-u_{i}+u_{j}+y_{i j} \geq 0 & \text { most } \operatorname{arcs}(i, j) \\
-1+u_{j}+y_{s j} \geq 0 & \operatorname{arcs}(s, j) \\
-u_{i}+y_{i t} \geq 0 & \operatorname{arcs}(i, t)
\end{array}
$$

We add "fake variables" u_{s}, u_{t} fixed to have $u_{s}=1$ and $u_{t}=0$.

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t :

$$
\begin{array}{rr}
-u_{i}+u_{j}+y_{i j} \geq 0 & \text { most } \operatorname{arcs}(i, j) \\
-1+u_{j}+y_{s j} \geq 0 & \operatorname{arcs}(s, j) \\
-u_{i}+y_{i t} \geq 0 & \operatorname{arcs}(i, t)
\end{array}
$$

We add "fake variables" u_{s}, u_{t} fixed to have $u_{s}=1$ and $u_{t}=0$.
This gives us a simpler set of constraints:

$$
\begin{aligned}
-u_{i}+u_{j}+y_{i j} & \geq 0 \\
u_{s} & =1 \\
u_{t} & =0
\end{aligned}
$$

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t :

$$
\begin{array}{rr}
-u_{i}+u_{j}+y_{i j} \geq 0 & \text { most } \operatorname{arcs}(i, j) \\
-1+u_{j}+y_{s j} \geq 0 & \operatorname{arcs}(s, j) \\
-u_{i}+y_{i t} \geq 0 & \operatorname{arcs}(i, t)
\end{array}
$$

We add "fake variables" u_{s}, u_{t} fixed to have $u_{s}=1$ and $u_{t}=0$.
This gives us a simpler set of constraints:

$$
\begin{aligned}
y_{i j} & \geq u_{i}-u_{j} \\
u_{s} & =1 \\
u_{t} & =0
\end{aligned}
$$

The dual LP as a minimax problem

Our current dual LP:

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

The dual LP as a minimax problem

Our current dual LP:

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

The only constraints on $y_{i j}$ are lower bounds: $y_{i j} \geq u_{i}-u_{j}$ and $y_{i j} \geq 0$.

The dual LP as a minimax problem

Our current dual LP:

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

The only constraints on $y_{i j}$ are lower bounds: $y_{i j} \geq u_{i}-u_{j}$ and $y_{i j} \geq 0$. We can replace $y_{i j}$ by $\max \left\{0, u_{i}-u_{j}\right\}$:

The dual LP as a minimax problem

Our current dual LP:

$$
\begin{array}{cl}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

The only constraints on $y_{i j}$ are lower bounds: $y_{i j} \geq u_{i}-u_{j}$ and $y_{i j} \geq 0$. We can replace $y_{i j}$ by $\max \left\{0, u_{i}-u_{j}\right\}$:
$\begin{array}{ll}\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\ \text { subject to } & u_{s}=1, u_{t}=0 .\end{array}$

Cuts are feasible solutions

Our current dual LP:

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

We can use a cut (S, T) to get a feasible solution!

Cuts are feasible solutions

Our current dual LP:

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

We can use a cut (S, T) to get a feasible solution!

- Set $u_{k}=1$ if $k \in S$ and $u_{k}=0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

Cuts are feasible solutions

Our current dual LP:

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

We can use a cut (S, T) to get a feasible solution!

- Set $u_{k}=1$ if $k \in S$ and $u_{k}=0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

- We have $\max \left\{0, u_{i}-u_{j}\right\}=1$ if $i \in S, j \in T$ and 0 otherwise.

So the objective function is exactly $\sum_{i \in S} \sum_{j \in T} c_{i j}=c(S, T)$.

Cuts are feasible solutions

Our current dual LP:

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

We can use a cut (S, T) to get a feasible solution!

- Set $u_{k}=1$ if $k \in S$ and $u_{k}=0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

- We have $\max \left\{0, u_{i}-u_{j}\right\}=1$ if $i \in S, j \in T$ and 0 otherwise.

So the objective function is exactly $\sum_{i \in S} \sum_{j \in T} c_{i j}=c(S, T)$.
Will all optimal solutions have this form?

Finishing the proof

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Finishing the proof

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Things we have left to check:

- In any optimal solution, $u_{k} \in \mathbb{Z}$ for all nodes k.
(Total unimodularity)

Finishing the proof

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Things we have left to check:

- In any optimal solution, $u_{k} \in \mathbb{Z}$ for all nodes k.
(Total unimodularity)
- In any optimal solution, $u_{k} \in[0,1]$ for all nodes k.
(This is what we will do next.)

Showing that $u_{k} \in[0,1]$

Lemma

The linear program

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

has an optimal solution \mathbf{u} in which $0 \leq u_{k} \leq 1$ for all k.

Showing that $u_{k} \in[0,1]$

Lemma

The linear program

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

has an optimal solution \mathbf{u} in which $0 \leq u_{k} \leq 1$ for all k.

To prove this, take an optimal solution \mathbf{u}.
Replace each u_{k} by $\max \left\{0, \min \left\{1, u_{k}\right\}\right\}$, "clipping" u_{k} to $[0,1]$.

Showing that $u_{k} \in[0,1]$

Lemma

The linear program

$$
\begin{array}{ll}
\underset{\mathbf{u}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} \cdot \max \left\{0, u_{i}-u_{j}\right\} \\
\text { subject to } & u_{s}=1, u_{t}=0
\end{array}
$$

has an optimal solution \mathbf{u} in which $0 \leq u_{k} \leq 1$ for all k.

To prove this, take an optimal solution \mathbf{u}.
Replace each u_{k} by $\max \left\{0, \min \left\{1, u_{k}\right\}\right\}$, "clipping" u_{k} to $[0,1]$.
Want to show: when we do this, $\max \left\{0, u_{i}-u_{j}\right\}$ never increases.

Casework

What happens to $\max \left\{0, u_{i}-u_{j}\right\}$ when we clip u_{i}, u_{j} to $[0,1]$?

Casework

What happens to $\max \left\{0, u_{i}-u_{j}\right\}$ when we clip u_{i}, u_{j} to $[0,1]$?

- Suppose $u_{i} \leq u_{j}$:

Then $\max \left\{0, u_{i}-u_{j}\right\}$ stays 0 .

Casework

What happens to $\max \left\{0, u_{i}-u_{j}\right\}$ when we clip u_{i}, u_{j} to $[0,1]$?

- Suppose $u_{i} \leq u_{j}$:

Then $\max \left\{0, u_{i}-u_{j}\right\}$ stays 0 .

- Suppose $u_{i}>u_{j}$ both >1 or both <0 :

Then $\max \left\{0, u_{i}-u_{j}\right\}$ goes from positive to 0 .

- Suppose $u_{i}>1$:

Then $u_{i}-u_{j}$ decreases by $\left(1-u_{i}\right)$.

Casework

What happens to $\max \left\{0, u_{i}-u_{j}\right\}$ when we clip u_{i}, u_{j} to $[0,1]$?

- Suppose $u_{i} \leq u_{j}$:

Then $\max \left\{0, u_{i}-u_{j}\right\}$ stays 0 .

- Suppose $u_{i}>u_{j}$ both >1 or both <0 :

Then $\max \left\{0, u_{i}-u_{j}\right\}$ goes from positive to 0 .

- Suppose $u_{i}>1$:

Then $u_{i}-u_{j}$ decreases by $\left(1-u_{i}\right)$.

- Suppose $u_{j}<0$:

Then $u_{i}-u_{j}$ decreases by $\left|u_{j}\right|$.

Casework

What happens to $\max \left\{0, u_{i}-u_{j}\right\}$ when we clip u_{i}, u_{j} to $[0,1]$?

- Suppose $u_{i} \leq u_{j}$:

Then $\max \left\{0, u_{i}-u_{j}\right\}$ stays 0 .

- Suppose $u_{i}>u_{j}$ both >1 or both <0 :

Then $\max \left\{0, u_{i}-u_{j}\right\}$ goes from positive to 0 .

- Suppose $u_{i}>1$:

Then $u_{i}-u_{j}$ decreases by $\left(1-u_{i}\right)$.

- Suppose $u_{j}<0$:

Then $u_{i}-u_{j}$ decreases by $\left|u_{j}\right|$.
Finally, if $0 \leq u_{j}<u_{i} \leq 1$, nothing changes.

Total unimodularity

Lemma

The constraint matrix of

$$
\begin{array}{ll}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \quad(i, j) \in A \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

is totally unimodular.

Total unimodularity

Lemma

The constraint matrix of

$$
\begin{array}{lll}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} & \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} & (i, j) \in A \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted } &
\end{array}
$$

is totally unimodular.
(Check 1×1 matrices.

Total unimodularity

Lemma

The constraint matrix of

$$
\begin{array}{lll}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} & \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} & (i, j) \in A \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted } &
\end{array}
$$

is totally unimodular.
(ㅇ) Check 1×1 matrices.
(2) Check matrices with a column with ≤ 1 nonzero entry.

Total unimodularity

Lemma

The constraint matrix of

$$
\begin{array}{ll}
\underset{\mathbf{u}, \mathbf{y}}{\operatorname{minimize}} & \sum_{(i, j) \in A} c_{i j} y_{i j} \\
\text { subject to } & y_{i j} \geq u_{i}-u_{j} \quad(i, j) \in A \\
& u_{s}=1, u_{t}=0 \\
& \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text { unrestricted }
\end{array}
$$

is totally unimodular.
(Check 1×1 matrices.
(2) Check matrices with a column with ≤ 1 nonzero entry.
© Deal with exceptional cases.

Total unimodularity example

Constraints:
$y_{s a}$
$y_{s b}$

$$
\begin{array}{ll}
-u_{s}+u_{a} & \geq 0 \\
-u_{s}+u_{b} & \geq 0
\end{array}
$$

$y_{a b}$

$$
-u_{a}+u_{b} \quad \geq 0
$$

$$
y_{a t} \quad-u_{a} \quad+u_{t} \geq 0
$$

$y_{b t}$

$$
-u_{b}+u_{t} \geq 0
$$

Total unimodularity example

Constraints:

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{y} \\
\mathbf{u}
\end{array}\right] \geq\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Exceptional case

Only kind of submatrix that has no row or column with ≤ 1 nonzero entry:

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

Exceptional case

Only kind of submatrix that has no row or column with ≤ 1 nonzero entry:

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

In general: this happens if, whenever we pick the row for arc (i, j), we pick both the u_{i} and u_{j} columns.

Exceptional case

Only kind of submatrix that has no row or column with ≤ 1 nonzero entry:

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

In general: this happens if, whenever we pick the row for arc (i, j), we pick both the u_{i} and u_{j} columns.

In this case, the determinant is 0 : the columns add to 0 , so they are linearly dependent.

Exceptional case

Only kind of submatrix that has no row or column with ≤ 1 nonzero entry:

$$
\left[\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1
\end{array}\right] \rightsquigarrow\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right]
$$

In general: this happens if, whenever we pick the row for $\operatorname{arc}(i, j)$, we pick both the u_{i} and u_{j} columns.

In this case, the determinant is 0 : the columns add to 0 , so they are linearly dependent.

This completes the proof of the min-cut max-flow theorem.

