The Max-Flow Min-Cut Theorem Math 482, Lecture 24

Misha Lavrov

April 1, 2020

The max-flow min-cut theorem

Last time, we proved that for any network:

Theorem

If **x** is a feasible flow, and (S, T) is a cut, then

$$v(\mathbf{x}) \leq c(S, T)$$
:

the value of **x** is at most the capacity of (S, T).

The max-flow min-cut theorem

Last time, we proved that for any network:

Theorem

If **x** is a feasible flow, and (S, T) is a cut, then

 $v(\mathbf{x}) \leq c(S, T)$:

the value of **x** is at most the capacity of (S, T).

The plan for today is to prove, additionally:

Theorem

If x is a maximum flow and (S, T) is a minimum cut (x maximizes v(x) and (S, T) minimizes c(S, T)), then

$$v(\mathbf{x})=c(S,T).$$

• What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".

- What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".
- Step 1: We will show that the duality between flows and cuts is exactly LP duality. That is, we'll take the dual of the max-flow problem, and show that it is the min-cut problem.

Proof ingredients

- What we proved last time was the "weak duality" version. What we're proving is analogous to "strong duality".
- Step 1: We will show that the duality between flows and cuts is exactly LP duality. That is, we'll take the dual of the max-flow problem, and show that it is the min-cut problem.
- **Step 2:** For flows, there are no problems with integrality. But cuts will correspond to *integer* solutions of the dual LP.

We will prove that this is not a problem by showing that the constraint matrix is TU.

Last time, we wrote down the LP for maximum flow:

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{maximize}} & \sum_{j:(s,j)\in A} x_{sj} \\ \text{subject to} & \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = 0 \quad (k \in N, k \neq s, t) \\ & x_{ij} \leq c_{ij} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Last time, we wrote down the LP for maximum flow:

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{maximize}} & \sum_{j:(s,j)\in A} x_{sj} \\ \text{subject to} & \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj} = 0 \quad (k \in N, k \neq s, t) \\ & x_{ij} \leq c_{ij} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

(We assume there are no arcs into s or out of t.) We see that the dual will have:

• A dual variable u_k for each node $k \in N$ other than s, t.

Last time, we wrote down the LP for maximum flow:

(We assume there are no arcs into s or out of t.) We see that the dual will have:

• A dual variable u_k for each node $k \in N$ other than s, t.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

• A dual variable y_{ij} for each arc $(i, j) \in A$.

Taking the dual 0●000 All optimal dual solutions are cuts $_{\rm OOOOOO}$

The dual LP

Taking the dual 0●000 All optimal dual solutions are cuts 000000

The dual LP

$$\underset{\mathbf{u},\mathbf{y}}{\text{minimize}} \quad \sum_{(i,j)\in A} c_{ij} y_{ij}$$

Lecture	plan

All optimal dual solutions are cuts $_{\rm OOOOOO}$

The dual LP

$$\begin{array}{ll} \underset{u,y}{\text{minimize}} & \sum_{(i,j)\in\mathcal{A}} c_{ij}y_{ij} \\ \\ \text{subject to} & -u_i + u_j + y_{ij} \geq 0 \qquad (x_{ij}, i \neq s, j \neq t) \end{array}$$

Lecture	plan

All optimal dual solutions are cuts $_{\rm OOOOOO}$

The dual LP

$$\begin{array}{ll} \underset{\textbf{u},\textbf{y}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij}y_{ij} \\ \text{subject to} & -u_i + u_j + y_{ij} \geq 0 \qquad (x_{ij}, i \neq s, j \neq t) \\ & u_j + y_{sj} \geq 1 \qquad (x_{sj}) \end{array}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 = 釣�?

Lecture	plan

All optimal dual solutions are cuts $_{\rm OOOOOO}$

The dual LP

$$\begin{array}{ll} \underset{u,y}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij}y_{ij} \\ \text{subject to} & -u_i + u_j + y_{ij} \geq 0 \qquad (x_{ij}, i \neq s, j \neq t) \\ & u_j + y_{sj} \geq 1 \qquad (x_{sj}) \\ -u_i & + y_{it} \geq 0 \qquad (x_{it}) \end{array}$$

Lecture	plan

All optimal dual solutions are cuts 000000

イロト イボト イヨト イヨト ヨー のくや

The dual LP

subject to $-u_i + u_j + y_{ij} \ge 0$ $(x_{ij}, i \ne s, j \ne t)$ $u_j + y_{sj} \ge 1$ (x_{sj}) $-u_i + y_{it} \ge 0$ (x_{it}) $\mathbf{y} \ge \mathbf{0}, \mathbf{u}$ unrestricted

Taking the dual 00●00 All optimal dual solutions are cuts $_{\rm OOOOOO}$

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t:

 $\begin{array}{ll} -u_i+u_j+y_{ij} \geq 0 & \text{most arcs } (i,j) \\ u_j+y_{sj} \geq 1 & \text{arcs } (s,j) \\ -u_i & +y_{it} \geq 0 & \text{arcs } (i,t) \end{array}$

Taking the dual 00●00 All optimal dual solutions are cuts $_{\rm OOOOOO}$

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t:

 $\begin{array}{ll} -u_i + u_j + y_{ij} \geq 0 & \text{most arcs } (i, j) \\ -1 + u_j + y_{sj} \geq 0 & \text{arcs } (s, j) \\ -u_i & + y_{it} \geq 0 & \text{arcs } (i, t) \end{array}$

Taking the dual 00●00 All optimal dual solutions are cuts $_{\rm OOOOOO}$

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t:

$-u_i + u_j + y_{ij} \geq 0$	most arcs (<i>i</i> , <i>j</i>)
$-1+u_j+y_{sj}\geq 0$	arcs (s, j)
$-u_i + y_{it} \ge 0$	arcs (i, t)

We add "fake variables" u_s , u_t fixed to have $u_s = 1$ and $u_t = 0$.

Taking the dual 00●00 All optimal dual solutions are cuts 000000

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t:

 $\begin{aligned} &-u_i+u_j+y_{ij}\geq 0 & \text{most arcs } (i,j) \\ &-1+u_j+y_{sj}\geq 0 & \text{arcs } (s,j) \\ &-u_i &+y_{it}\geq 0 & \text{arcs } (i,t) \end{aligned}$

We add "fake variables" u_s , u_t fixed to have $u_s = 1$ and $u_t = 0$. This gives us a simpler set of constraints:

$$-u_i + u_j + y_{ij} \ge 0$$
 all arcs (i, j)
 $u_s = 1$
 $u_t = 0$

Taking the dual 00●00 All optimal dual solutions are cuts 000000

Simplifying the dual LP

The dual constraints all have nearly the same form, except for constraints corresponding to nodes s and t:

 $\begin{aligned} &-u_i+u_j+y_{ij}\geq 0 & \text{most arcs } (i,j) \\ &-1+u_j+y_{sj}\geq 0 & \text{arcs } (s,j) \\ &-u_i &+y_{it}\geq 0 & \text{arcs } (i,t) \end{aligned}$

We add "fake variables" u_s , u_t fixed to have $u_s = 1$ and $u_t = 0$. This gives us a simpler set of constraints:

$$y_{ij} \ge u_i - u_j$$
 all arcs (i, j)
 $u_s = 1$
 $u_t = 0$

Taking the dual 000●0 All optimal dual solutions are cuts $_{\rm OOOOOO}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The dual LP as a minimax problem

Our current dual LP:

 $\begin{array}{ll} \underset{\mathbf{u},\mathbf{y}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij}y_{ij} \\ \text{subject to} & y_{ij} \geq u_i - u_j \\ & u_s = 1, u_t = 0 \\ & \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text{ unrestricted} \end{array}$

Taking the dual 000€0

All optimal dual solutions are cuts 000000

イロト イボト イヨト イヨト ヨー のくや

The dual LP as a minimax problem

Our current dual LP:

 $\begin{array}{ll} \underset{\textbf{u},\textbf{y}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij}y_{ij} \\ \text{subject to} & y_{ij} \geq u_i - u_j \\ & u_s = 1, u_t = 0 \\ & \textbf{y} \geq \textbf{0}, \textbf{u} \text{ unrestricted} \end{array}$

The only constraints on y_{ij} are lower bounds: $y_{ij} \ge u_i - u_j$ and $y_{ij} \ge 0$.

Taking the dual 000●0 All optimal dual solutions are cuts 000000

The dual LP as a minimax problem

Our current dual LP:

 $\begin{array}{ll} \underset{\textbf{u},\textbf{y}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij}y_{ij} \\ \text{subject to} & y_{ij} \geq u_i - u_j \\ & u_s = 1, u_t = 0 \\ & \textbf{y} \geq \textbf{0}, \textbf{u} \text{ unrestricted} \end{array}$

The only constraints on y_{ij} are lower bounds: $y_{ij} \ge u_i - u_j$ and $y_{ij} \ge 0$. We can replace y_{ij} by max $\{0, u_i - u_j\}$:

Taking the dual 000€0

All optimal dual solutions are cuts 000000

The dual LP as a minimax problem

Our current dual LP:

$$\begin{array}{ll} \underset{\mathbf{u},\mathbf{y}}{\text{minimize}} & \sum_{(i,j)\in\mathcal{A}} c_{ij}y_{ij} \\ \text{subject to} & y_{ij} \geq u_i - u_j \\ & u_s = 1, u_t = 0 \\ & \mathbf{y} \geq \mathbf{0}, \mathbf{u} \text{ unrestricted} \end{array}$$

The only constraints on y_{ij} are lower bounds: $y_{ij} \ge u_i - u_j$ and $y_{ij} \ge 0$. We can replace y_{ij} by max $\{0, u_i - u_j\}$:

$$\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{(i,j)\in\mathcal{A}} c_{ij}\cdot\max\{0,u_i-u_j\}\\ \\ \text{subject to} & u_s=1,u_t=0. \end{array}$$

Taking the dual 0000● All optimal dual solutions are cuts $_{\rm OOOOOO}$

Cuts are feasible solutions

Our current dual LP:

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}\\\\ \text{subject to} & u_s = 1, u_t = 0. \end{array}$

We can use a cut (S, T) to get a feasible solution!

Taking the dual 0000● All optimal dual solutions are cuts 000000

Cuts are feasible solutions

Our current dual LP:

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}\\\\ \text{subject to} & u_s = 1, u_t = 0. \end{array}$

We can use a cut (S, T) to get a feasible solution!

• Set $u_k = 1$ if $k \in S$ and $u_k = 0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

Taking the dual 0000● All optimal dual solutions are cuts 000000

Cuts are feasible solutions

Our current dual LP:

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}\\\\ \text{subject to} & u_s = 1, u_t = 0. \end{array}$

We can use a cut (S, T) to get a feasible solution!

• Set $u_k = 1$ if $k \in S$ and $u_k = 0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

We have max{0, u_i − u_j} = 1 if i ∈ S, j ∈ T and 0 otherwise.
So the objective function is exactly ∑_{i∈S} ∑_{i∈T} c_{ij} = c(S, T).

Taking the dual 0000● All optimal dual solutions are cuts 000000

Cuts are feasible solutions

Our current dual LP:

 $\begin{array}{ll} \underset{\mathbf{u}}{\text{minimize}} & \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}\\\\ \text{subject to} & u_s = 1, u_t = 0. \end{array}$

We can use a cut (S, T) to get a feasible solution!

• Set $u_k = 1$ if $k \in S$ and $u_k = 0$ if $k \in T$.

We know $s \in S$ and $t \in T$, so this satisfies the constraints.

We have max{0, u_i − u_j} = 1 if i ∈ S, j ∈ T and 0 otherwise.
So the objective function is exactly ∑_{i∈S} ∑_{j∈T} c_{ij} = c(S, T).
Will all optimal solutions have this form?

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Things we have left to check:

• In any optimal solution, $u_k \in \mathbb{Z}$ for all nodes k.

(Total unimodularity)

Our goal is to show that all optimal solutions to the dual LP correspond to cuts. This will complete the proof of min-cut max-flow by strong LP duality.

Things we have left to check:

• In any optimal solution, $u_k \in \mathbb{Z}$ for all nodes k.

(Total unimodularity)

In any optimal solution, u_k ∈ [0, 1] for all nodes k.
(This is what we will do next.)

Showing that $u_k \in [0, 1]$

Lemma

The linear program

$$\underset{\mathbf{u}}{\text{minimize}} \quad \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}$$

subject to
$$u_s = 1, u_t = 0$$

has an optimal solution **u** in which $0 \le u_k \le 1$ for all k.

・ロト・西ト・ヨト・西ト・日・ シック

Showing that $u_k \in [0, 1]$

Lemma

The linear program

$$\underset{\mathbf{u}}{\text{minimize}} \quad \sum_{(i,j)\in A} c_{ij} \cdot \max\{0, u_i - u_j\}$$

subject to
$$u_s = 1, u_t = 0$$

has an optimal solution **u** in which $0 \le u_k \le 1$ for all k.

To prove this, take an optimal solution **u**.

Replace each u_k by max $\{0, \min\{1, u_k\}\}$, "clipping" u_k to [0, 1].

・ロト・日本・日本・日本・日本・日本

Showing that $u_k \in [0, 1]$

Lemma

The linear program

$$\underset{\mathbf{u}}{\text{minimize}} \quad \sum_{(i,j)\in\mathcal{A}} c_{ij} \cdot \max\{0, u_i - u_j\}$$

subject to
$$u_s = 1, u_t = 0$$

has an optimal solution **u** in which $0 \le u_k \le 1$ for all k.

To prove this, take an optimal solution **u**.

Replace each u_k by max $\{0, \min\{1, u_k\}\}$, "clipping" u_k to [0, 1].

Want to show: when we do this, $\max\{0, u_i - u_j\}$ never increases.

Lecture plan oo	Taking the dual	All optimal dual solutions are cuts
Casework		

What happens to max $\{0, u_i - u_j\}$ when we clip u_i, u_j to [0, 1]?

Lecture plan 00	Taking the dual 00000	All optimal dual solutions are cuts
Casework		

What happens to $\max\{0, u_i - u_j\}$ when we clip u_i, u_j to [0, 1]?

• Suppose $u_i \leq u_j$:

Then max $\{0, u_i - u_j\}$ stays 0.

Lecture plan	Taking the dual	All optimal dual solutions are cuts
oo	00000	00000
Casework		

What happens to max $\{0, u_i - u_j\}$ when we clip u_i, u_j to [0, 1]?

• Suppose $u_i \leq u_j$:

Then max $\{0, u_i - u_j\}$ stays 0.

• Suppose $u_i > u_j$ both > 1 or both < 0:

Then $\max\{0, u_i - u_j\}$ goes from positive to 0.

• Suppose $u_i > 1$:

Then $u_i - u_j$ decreases by $(1 - u_i)$.

Lecture plan 00	Taking the dual	All optimal dual solutions are cuts
Casework		

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

What happens to max $\{0, u_i - u_j\}$ when we clip u_i, u_j to [0, 1]?

• Suppose $u_i \leq u_j$:

Then max $\{0, u_i - u_j\}$ stays 0.

• Suppose $u_i > u_j$ both > 1 or both < 0:

Then $\max\{0, u_i - u_j\}$ goes from positive to 0.

• Suppose $u_i > 1$:

Then $u_i - u_j$ decreases by $(1 - u_i)$.

• Suppose $u_j < 0$:

Then $u_i - u_j$ decreases by $|u_j|$.

Lecture plan 00	Taking the dual	All optimal dual solutions are cuts
Casework		

What happens to max $\{0, u_i - u_j\}$ when we clip u_i, u_j to [0, 1]?

• Suppose $u_i \leq u_j$:

Then max $\{0, u_i - u_j\}$ stays 0.

• Suppose $u_i > u_j$ both > 1 or both < 0:

Then $\max\{0, u_i - u_j\}$ goes from positive to 0.

• Suppose $u_i > 1$:

Then $u_i - u_j$ decreases by $(1 - u_i)$.

• Suppose *u_j* < 0:

Then $u_i - u_j$ decreases by $|u_j|$.

Finally, if $0 \le u_j < u_i \le 1$, nothing changes.

イロト イボト イヨト イヨト ヨー のくや

Total unimodularity

Lemma

The constraint matrix of

is totally unimodular.

Total unimodularity

Lemma

The constraint matrix of

is totally unimodular.

Check 1 × 1 matrices.

Total unimodularity

Lemma

The constraint matrix of

is totally unimodular.

O Check 1 × 1 matrices.

2 Check matrices with a column with ≤ 1 nonzero entry.

Total unimodularity

Lemma

The constraint matrix of

is totally unimodular.

- Oheck 1 × 1 matrices.
- ② Check matrices with a column with ≤ 1 nonzero entry.
- Obeal with exceptional cases.

Taking the dual

All optimal dual solutions are cuts ${\scriptstyle 000000}$

Total unimodularity example

Constraints:

 $y_{sa} - u_s + u_a \ge 0$ $y_{sb} - u_s + u_b \ge 0$ $y_{ab} - u_a + u_b \ge 0$ $y_{at} - u_a + u_b \ge 0$ $y_{at} - u_a + u_t \ge 0$ $y_{bt} - u_b + u_t \ge 0$

Taking the dual

Total unimodularity example

Constraints:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{y} \\ \mathbf{u} \end{bmatrix} \ge \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

In general: this happens if, whenever we pick the row for arc (i, j), we pick both the u_i and u_j columns.

Lecture plan oo	Taking the dual 00000	All optimal dual solutions are cuts
Exceptional case		

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

In general: this happens if, whenever we pick the row for arc (i, j), we pick both the u_i and u_j columns.

In this case, the determinant is 0: the columns add to 0, so they are linearly dependent.

Lecture plan oo	Taking the dual 00000	All optimal dual solutions are cuts
Exceptional case		

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & -1 & 1 \end{bmatrix} \rightsquigarrow \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{bmatrix}$$

In general: this happens if, whenever we pick the row for arc (i, j), we pick both the u_i and u_j columns.

In this case, the determinant is 0: the columns add to 0, so they are linearly dependent.

This completes the proof of the min-cut max-flow theorem.