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The max-flow min-cut theorem

Last time, we proved that for any network:

If x is a feasible flow, and (S, T) is a cut, then

v(x) <c(S,T):

the value of x is at most the capacity of (S, T).
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The max-flow min-cut theorem

Last time, we proved that for any network:

If x is a feasible flow, and (S, T) is a cut, then

v(x) <c(S,T):

the value of x is at most the capacity of (S, T).

The plan for today is to prove, additionally:

If x is a maximum flow and (S, T) is a minimum cut (x maximizes
v(x) and (S, T) minimizes c(S, T)), then

v(x) =¢(S, T).
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Proof ingredients

o What we proved last time was the “weak duality” version.
What we're proving is analogous to “strong duality”.
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o What we proved last time was the “weak duality” version.
What we're proving is analogous to “strong duality”.

o Step 1: We will show that the duality between flows and cuts
is exactly LP duality. That is, we'll take the dual of the
max-flow problem, and show that it is the min-cut problem.

o Step 2: For flows, there are no problems with integrality. But
cuts will correspond to integer solutions of the dual LP.

We will prove that this is not a problem by showing that the
constraint matrix is TU.
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The maximum flow LP

Last time, we wrote down the LP for maximum flow:

maxi(mize Z Xsj
Ji(sJ)EA

subject to Z Xk — Z xj =0 (ke N k#s,t)
i:(i,k)EA Ji(kj)EA
Xj < Cjj (i,j)eA

x>0
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(We assume there are no arcs into s or out of t.)

We see that the dual will have:

o A dual variable uy for each node k € N other than s, t.
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Last time, we wrote down the LP for maximum flow:
maxi(mize Z Xsj
Ji(sj)€EA

subject to Z Xik — Z xij =0 (ke N, k#s,t)

i:(i,k)EA Ji(kJj)EA
Xjj < Cjj (i,j) € A
x>0
(We assume there are no arcs into s or out of t.)
We see that the dual will have:
o A dual variable uy for each node k € N other than s, t.

o A dual variable yj; for each arc (i,j) € A.
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u’y
(ij)eA
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The dual LP
maximize Z Xsj
Ji(sJ)EA
subject to Z Xik — Z Xk =0 (ug)
i:(i,k)EA Ji(kj)EA
Xjj < Cjj (vi7)
x>0

minimize CiiVii
e (MZ);A iiYij
subject to —uj 4+ uj+y; >0 (xij, i # 5,] # t)
uj+ys > 1 (x57)
—ui  +yr>0 (xit)
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The dual LP
maximize Z Xsj
Ji(sJ)EA
subject to Z Xik — Z Xk =0 (ug)
i:(i,k)EA Ji(kj)EA
Xjj < Cjj (vi7)
x>0

minimize E Cij Yij
u’y

(ij)eA
subject to —uj 4+ uj+y; >0 (xij, i # 5,] # t)
ui+ys>1 (xs)
—uj  +yx>0 (xit)

y > 0, u unrestricted
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Simplifying the dual LP

The dual constraints all have nearly the same form, except for
constraints corresponding to nodes s and t:

—ui+ui+y; >0 most arcs (i, )
ui+ys>1 arcs (s,Jj)
—u; +yir >0 arcs (i, t)
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The dual constraints all have nearly the same form, except for
constraints corresponding to nodes s and t:

—ui+ui+y;>0 most arcs (i, )
14+ u+y;>0 arcs (s, J)
b >0 arcs (i. )

We add “fake variables” us, u; fixed to have us =1 and u; = 0.
This gives us a simpler set of constraints:

Yij > uj — uj all arcs (i, /)

us =1

UtZO
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The dual LP as a minimax problem

Our current dual LP:
minui’ryize Z CijYij
(ij)eA
subject to  y;; > uj — uj (ib,j)eA
us=1,u=0

y > 0, u unrestricted
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Our current dual LP:
minui’r?ize Z CijYij
(ij)eA
subject to  yjj > uj — u; (i,j)e A
us=1,u=0

y > 0, u unrestricted

The only constraints on y;; are lower bounds: y;; > u; — u; and
yij > 0. We can replace y;; by max{0, u; — uj}:

minimize g cij - max{0, u; — u;}
u
(iJ)EA

subject to us =1, u; = 0.
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Cuts are feasible solutions

Our current dual LP:
miniumize Z cij - max{0, u; — u;}
(ij)EA

subject to us =1,u; =0.

We can use a cut (S, T) to get a feasible solution!
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We know s € S and t € T, so this satisfies the constraints.
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Our current dual LP:
minimize Z cij - max{0, u; — u;}
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subject to us =1, u; = 0.
We can use a cut (S, T) to get a feasible solution!
o Setu,=1ifkeSandu,=0ifkeT.
We know s € S and t € T, so this satisfies the constraints.
o We have max{0,u; —u;j} =1if i€ S,j e T and 0 otherwise.

So the objective function is exactly > ;¢ > ;e cj = c(S, T).
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Our current dual LP:
minimize Z cij - max{0, u; — u;}
(ij)eA
subject to us =1, u; = 0.
We can use a cut (S, T) to get a feasible solution!
o Setu,=1ifkeSandu,=0ifkeT.
We know s € S and t € T, so this satisfies the constraints.
o We have max{0,u; —u;j} =1if i€ S,j e T and 0 otherwise.
ci=1c(S5,T).

So the objective function is exactly > ;s > ic T

Will all optimal solutions have this form?
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Finishing the proof

Our goal is to show that all optimal solutions to the dual LP
correspond to cuts. This will complete the proof of min-cut
max-flow by strong LP duality.
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max-flow by strong LP duality.

Things we have left to check:
o In any optimal solution, uy € Z for all nodes k.

(Total unimodularity)
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Our goal is to show that all optimal solutions to the dual LP
correspond to cuts. This will complete the proof of min-cut
max-flow by strong LP duality.

Things we have left to check:
o In any optimal solution, uy € Z for all nodes k.
(Total unimodularity)
o In any optimal solution, uyg € [0,1] for all nodes k.

(This is what we will do next.)
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Showing that uy € [0, 1]

Lemma

The linear program
minimize Z cij - max{0, u; — u;}
u
(iJ)EA

subject to us =1,u; =0

has an optimal solution u in which 0 < u, <1 for all k.
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Showing that uy € [0, 1]

Lemma

The linear program

minimize E cij - max{0, u; — u;}
u
(ij)eA

subject to us =1,u; =0

has an optimal solution u in which 0 < u, <1 for all k.

To prove this, take an optimal solution u.

Replace each uy by max{0, min{1, ux}}, “clipping” ux to [0, 1].
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Showing that uy € [0, 1]

Lemma

The linear program

minfjmize Z cij - max{0, u; — u;}
(ij)eA
subject to us =1,u; =0

has an optimal solution u in which 0 < u, <1 for all k.

To prove this, take an optimal solution u.
Replace each uy by max{0, min{1, ux}}, “clipping” ux to [0, 1].

Want to show: when we do this, max{0, u; — u;} never increases.
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Casework

What happens to max{0, u; — u;} when we clip u;, u; to [0, 1]?
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@ Suppose u; < uj:

Then max{0, u; — u;} stays 0.
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Casework

What happens to max{0, u; — u;} when we clip u;, u; to [0, 1]?
@ Suppose u; < uj:
Then max{0, uj — u;} stays 0.
@ Suppose u; > uj both > 1 or both < 0:
Then max{0, u; — u;} goes from positive to 0.
@ Suppose u; > 1:

Then uj — uj decreases by (1 — u;).
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Casework

What happens to max{0, u; — u;} when we clip u;, u; to [0, 1]?
@ Suppose u; < uj:
Then max{0, uj — u;} stays 0.
@ Suppose u; > uj both > 1 or both < 0:
Then max{0, u; — u;} goes from positive to 0.
@ Suppose u; > 1:
Then uj — uj decreases by (1 — u;).
o Suppose u; < 0:

Then u; — uj decreases by |uj|.
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What happens to max{0, u; — u;} when we clip u;, u; to [0, 1]?
@ Suppose u; < uj:
Then max{0, u; — u;} stays 0.
@ Suppose u; > uj both > 1 or both < 0:
Then max{0, u; — u;} goes from positive to 0.
@ Suppose u; > 1:
Then uj — uj decreases by (1 — u;).
@ Suppose u; < 0:
Then u; — uj decreases by |uj|.

Finally, if 0 < u; < uj <1, nothing changes.
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Total unimodularity

Lemma

The constraint matrix of
minimize Cii Vi
(ij)EA
subject to yjj > uj — u; (i,j))eA
us=1,u=0

y > 0, u unrestricted

is totally unimodular.
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Total unimodularity

Lemma

The constraint matrix of
minimize Cii Vi
(ij)EA
subject to yjj > uj — u; (i,j))eA
us=1,u=0

y > 0, u unrestricted

is totally unimodular.

@ Check 1 x 1 matrices.
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Total unimodularity

Lemma

The constraint matrix of

minimize CijYij
(if)eA

subject to yjj > uj — uj (i,j) €A
Us = 1, Uy = 0

y > 0, u unrestricted

is totally unimodular.

@ Check 1 x 1 matrices.

Q@ Check matrices with a column with < 1 nonzero entry.
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Total unimodularity

Lemma

The constraint matrix of

minimize CijYij
(if)eA

subject to yjj > uj — uj (i,j) €A
Us = 1, Uy = 0

y > 0, u unrestricted

is totally unimodular.

Q Check 1 x 1 matrices.
Q@ Check matrices with a column with < 1 nonzero entry.

© Deal with exceptional cases.
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Total unimodularity example

Constraints:

Ysa — Us+ U, >0
Ysb — Us + up >0

Yab — Uy + Up >0

Yat — U +u >0

Ybt —up+ur >0



All optimal dual solutions are cuts
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Total unimodularity example

Constraints:

10000 -1 1 0 0 0
01000 -1 0 1 0 0
001000—110[3’]20
cooo010 0 -1 0 1| 0
00001 0 0 -1 1 0
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Exceptional case

Only kind of submatrix that has no row or column with <1
nonzero entry:

10000 -1 1 0 O
oco1000 -1 0 1 0 -1 1 0
coo1o00 0 -1 1 0l~]|-1 01
00010 0 -1 01 0 -11
oo0oo0o01 0 0 -11
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Exceptional case

Only kind of submatrix that has no row or column with <1
nonzero entry:

10000 -1 1 0 O
oco1000 -1 0 1 0 -1 1 0
coo1o00 0 -1 1 0l~]|-1 01
00010 0 -1 01 0 -11
oo0oo0o01 0 0 -11

In general: this happens if, whenever we pick the row for arc (i, ),
we pick both the u; and u; columns.
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Only kind of submatrix that has no row or column with <1
nonzero entry:

1 0000 0
01000 0 -1 1 0
00100 Of~1|-1 0 1
00010 0 -1 01 0 —-11
oo0oo0o01 0 0 -11

In general: this happens if, whenever we pick the row for arc (i, ),
we pick both the u; and u; columns.

In this case, the determinant is 0: the columns add to 0, so they
are linearly dependent.
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Only kind of submatrix that has no row or column with <1
nonzero entry:

1 0000 0
01000 0 -1 1 0
00100 Of~1|-1 0 1
00010 0 -1 01 0 —-11
oo0oo0o01 0 0 -11

In general: this happens if, whenever we pick the row for arc (i, ),
we pick both the u; and u; columns.

In this case, the determinant is 0: the columns add to 0, so they
are linearly dependent.

This completes the proof of the min-cut max-flow theorem.
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