Augmenting Paths Math 482, Lecture 25

Misha Lavrov

April 3, 2020

Lecture plan

We know how to find a max flow using an LP. But this is inefficient; there are many many algorithms that are faster.

Lecture plan

We know how to find a max flow using an LP. But this is inefficient; there are many many algorithms that are faster.

Plan for today:

 Describe a simple greedy algorithm that tries to find a max flow.

Lecture plan

We know how to find a max flow using an LP. But this is inefficient; there are many many algorithms that are faster.

Plan for today:

- Describe a simple greedy algorithm that tries to find a max flow.
- See it get stuck.

Lecture plan

We know how to find a max flow using an LP. But this is inefficient; there are many many algorithms that are faster.

Plan for today:

- Describe a simple greedy algorithm that tries to find a max flow.
- See it get stuck.
- Make the algorithm more powerful.

The	greedy	algorithm	
000			

Augmenting paths

Directed *s*, *t*-paths

Definition

In a network, a *directed path* from s to t is a sequence

 $s, v_1, v_2, \ldots, v_k, t$

where $v_1, v_2, ..., v_k \in N$ and $(s, v_1), (v_1, v_2), ..., (v_k, t) \in A$.

The	greedy	algorithm
000		

Directed *s*, *t*-paths

Definition

In a network, a *directed path* from s to t is a sequence

$$s \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow t$$

where $v_1, v_2, ..., v_k \in N$ and $(s, v_1), (v_1, v_2), ..., (v_k, t) \in A$.

The	greedy	algorithm
000		

Directed *s*, *t*-paths

Definition

In a network, a *directed path* from s to t is a sequence

$$s \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow t$$

where $v_1, v_2, ..., v_k \in N$ and $(s, v_1), (v_1, v_2), ..., (v_k, t) \in A$.

Example:

Directed s, t-paths

Definition

In a network, a *directed path* from s to t is a sequence

$$s \rightarrow v_1 \rightarrow v_2 \cdots \rightarrow v_k \rightarrow t$$

where $v_1, v_2, ..., v_k \in N$ and $(s, v_1), (v_1, v_2), ..., (v_k, t) \in A$.

Example: directed path $s \rightarrow a \rightarrow b \rightarrow t$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

The greedy algorithm oco Augmenting paths oco The residual graph oc Using a directed path Image: Comparison of the comparison

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

The greedy algorithm oco Augmenting paths oco The residual graph oc Using a directed path Vertex of the second path Vertex of the second path

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

Whenever we have a directed path from s to t and all arcs along the path are below capacity, we can use it to increase the flow.

At this point, there are no more directed paths where all arcs are below capacity. But is this the maximum flow?

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 000
 00

A further improvement

If we redirect some $a \to b \to t$ flow to go $a \to d \to t$, we can send more flow along the path $s \to c \to d \to t$...

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 000
 00

A further improvement

If we redirect some $a \to b \to t$ flow to go $a \to d \to t$, we can send more flow along the path $s \to c \to d \to t$...

Increase flow along red edges, decrease flow along blue edge.

 Augmenting paths
 The residual graph

 000
 000

A further improvement

If we redirect some $a \to b \to t$ flow to go $a \to d \to t$, we can send more flow along the path $s \to c \to d \to t$...

Increase flow along red edges, decrease flow along blue edge. Note: $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$ is *almost* a directed path.

The greedy algorithm	Augmenting paths	The residual graph
000	○●○○	00

Augmenting paths

Definition

Given a network (N, A) and a feasible flow **x**, an augmenting path for **x** is a sequence of nodes

$$s = v_0, v_1, v_2, \ldots, v_k, v_{k+1} = t$$

such that for each pair v_i , v_{i+1} :

 either e = (v_i, v_{i+1}) is an arc below capacity (e ∈ A and x_e < c_e)

The greedy	algorithm

Augmenting paths

Definition

Given a network (N, A) and a feasible flow **x**, an augmenting path for **x** is a sequence of nodes

$$s = v_0, v_1, v_2, \ldots, v_k, v_{k+1} = t$$

such that for each pair v_i , v_{i+1} :

- either e = (v_i, v_{i+1}) is an arc below capacity (e ∈ A and x_e < c_e)
- or $e = (v_{i+1}, v_i)$ is an arc with positive flow $(e \in A \text{ and } x_e > 0)$.

The greedy	algorithm

Augmenting paths

Definition

Given a network (N, A) and a feasible flow **x**, an augmenting path for **x** is a sequence of nodes

$$s = v_0, v_1, v_2, \ldots, v_k, v_{k+1} = t$$

such that for each pair v_i , v_{i+1} :

- either e = (v_i, v_{i+1}) is an arc below capacity (e ∈ A and x_e < c_e)
- or $e = (v_{i+1}, v_i)$ is an arc with positive flow $(e \in A \text{ and } x_e > 0)$.

The sequence

$$s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$$

we found on the previous slide was an augmenting path.

The greedy algorithm 000	Augmenting paths 00●0	The residual graph
Using an augmenting pa	th to improve x	

To augment a feasible flow \mathbf{x} along an augmenting path:

- $\textbf{0} \quad \text{Let } \delta > \textbf{0} \text{ be the largest value such that}$
 - $x_e \leq c_e \delta$ for all forward arcs on the path;
 - $x_e \ge \delta$ for all backward arcs on the path.

The greedy algorithm	Augmenting paths	The residual graph
000	⊙⊙●⊙	00
Using an augmenting pat	h to improve x	

To augment a feasible flow \mathbf{x} along an augmenting path:

- $\textbf{0} \quad \text{Let } \delta > \textbf{0} \text{ be the largest value such that}$
 - $x_e \leq c_e \delta$ for all forward arcs on the path;

• $x_e \geq \delta$ for all backward arcs on the path.

2 For each forward arc *e*, increase x_e by δ .

The greedy algorithm 000	Augmenting paths 00●0	The residual graph
Using an augmenting pat	th to improve x	

To augment a feasible flow \mathbf{x} along an augmenting path:

- $\textbf{0} \quad \text{Let } \delta > \textbf{0} \text{ be the largest value such that}$
 - $x_e \leq c_e \delta$ for all forward arcs on the path;

• $x_e \geq \delta$ for all backward arcs on the path.

- **2** For each forward arc *e*, increase x_e by δ .
- **(a)** For each backward arc e, decrease x_e by δ .

The greedy algorithm	Augmenting paths	The residual graph
000	00●0	00
Using an augmenting patl	h to improve x	

To augment a feasible flow \mathbf{x} along an augmenting path:

- **(**) Let $\delta > 0$ be the largest value such that
 - $x_e \leq c_e \delta$ for all forward arcs on the path;

• $x_e \geq \delta$ for all backward arcs on the path.

- **2** For each forward arc *e*, increase x_e by δ .
- **(a)** For each backward arc *e*, decrease x_e by δ .

When we do this, flow is still conserved at internal nodes of the augmenting path. There are four possible cases:

$$\cdots \xrightarrow{+\delta} p \xrightarrow{+\delta} \cdots \qquad \cdots \xrightarrow{+\delta} q \xleftarrow{-\delta} \cdots \\ \cdots \xleftarrow{-\delta} r \xrightarrow{+\delta} \cdots \qquad \cdots \xleftarrow{-\delta} s \xleftarrow{-\delta} \cdots$$

The greedy a	algorithm	Augmenting paths
		0000

Ind the augmenting path.

The greedy algorithm	Augmenting paths	The residual gra
	0000	

() Find the augmenting path $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$.

The greedy algorithm	Augmenting paths	The residual gra
	0000	

- **(**) Find the augmenting path $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$.
- **②** Find the value δ we can augment by.

The greedy algorithm	Augmenting paths	The residual grap
	0000	

- **(**) Find the augmenting path $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$.
- **②** Find the value δ we can augment by: here, $\delta = 2$.

The greedy algorithm 000	Augmenting paths 000●	The residual graph

- **(**) Find the augmenting path $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$.
- **②** Find the value δ we can augment by: here, $\delta = 2$.
- **③** Increase or decrease the flow along each edge by δ .

The greedy algorithm	Augmenting paths	The res
	0000	

- **(**) Find the augmenting path $s \rightarrow c \rightarrow b \leftarrow a \rightarrow d \rightarrow t$.
- **②** Find the value δ we can augment by: here, $\delta = 2$.
- **(3)** Increase or decrease the flow along each edge by δ .

idual graph

The residual graph

We define a *residual graph* to help us find augmenting paths.

Definition

Given a network (N, A) and a feasible flow **x**, the residual graph is a network with:

The residual graph

We define a *residual graph* to help us find augmenting paths.

Definition

Given a network (N, A) and a feasible flow **x**, the residual graph is a network with:

• The same set of nodes N as the original network.

The residual graph

We define a *residual graph* to help us find augmenting paths.

Definition

Given a network (N, A) and a feasible flow **x**, the residual graph is a network with:

- The same set of nodes N as the original network.
- For each arc (i, j) ∈ A with x_{ij} < c_{ij}, a "forward" arc (i, j) with residual capacity c_{ij} x_{ij}.

The residual graph

We define a *residual graph* to help us find augmenting paths.

Definition

Given a network (N, A) and a feasible flow **x**, the residual graph is a network with:

- The same set of nodes N as the original network.
- For each arc (i, j) ∈ A with x_{ij} < c_{ij}, a "forward" arc (i, j) with residual capacity c_{ij} x_{ij}.
- For each arc $(i, j) \in A$ with $x_{ij} > 0$, a "backward" arc (j, i) with residual capacity x_{ij} .

The residual graph

We define a *residual graph* to help us find augmenting paths.

Definition

Given a network (N, A) and a feasible flow **x**, the residual graph is a network with:

- The same set of nodes N as the original network.
- For each arc (i, j) ∈ A with x_{ij} < c_{ij}, a "forward" arc (i, j) with residual capacity c_{ij} x_{ij}.
- For each arc $(i, j) \in A$ with $x_{ij} > 0$, a "backward" arc (j, i) with residual capacity x_{ij} .

Idea: augmenting paths for ${\bf x}$ are directed paths in the residual graph.

We construct the residual graph for our next-to-last feasible flow:

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < @

We construct the residual graph for our next-to-last feasible flow:

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ④

We construct the residual graph for our next-to-last feasible flow:

The greedy algorithm	Augmenting paths	The residual graph
000	0000	○●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The greedy algorithm	Augmenting paths	The residual graph
000	0000	○●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ○ 三 ○ ○ ○ ○

The greedy algorithm	Augmenting paths	The residual graph
000	0000	○●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 0000
 0

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

イロト イボト イヨト イヨト ヨー のくや

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 0000
 0●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 0000
 0●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

 The greedy algorithm
 Augmenting paths
 The residual graph

 000
 0000
 0●

Residual graph example

We construct the residual graph for our next-to-last feasible flow:

We can find the augmenting path $s \rightarrow b \leftarrow a \rightarrow d \rightarrow t$ by following only *forward* arrows (of either color) in the residual graph; $\delta = 2$ is the smallest number along those arrows.