Introd	

Variations on Max-Flow Problems Math 482, Lecture 27

Misha Lavrov

April 8, 2020

Introduction •	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Plan for the	electure		

Introduction •	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Plan for the	lecture		

Problems we'll consider:

• Supply and demand problems.

Problems we'll consider:

- Supply and demand problems.
- Finding feasible flows with lower and upper bounds.

Problems we'll consider:

- Supply and demand problems.
- Finding feasible flows with lower and upper bounds.
- Bipartite matchings and vertex covers (again).

Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Posing a	supply/demand_prob	lem	

$$\Delta_k(\mathbf{x}) := \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj}.$$

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Posing a	supply/demand_prob	lem	

$$\Delta_k(\mathbf{x}) := \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj}.$$

In a network flow problem, we want $\Delta_k(\mathbf{x}) = 0$ for $k \neq s, t$. We want to maximize $\Delta_t(\mathbf{x})$.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Posing a	supply/demand_prob	lem	

$$\Delta_k(\mathbf{x}) := \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj}.$$

In a network flow problem, we want $\Delta_k(\mathbf{x}) = 0$ for $k \neq s, t$. We want to maximize $\Delta_t(\mathbf{x})$.

In a supply/demand problem, there is no source or sink. We have a vector **d** of demands. For *every* node k, we want $\Delta_k(\mathbf{x}) = d_k$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Posing a	supply/demand_prob	lem	

$$\Delta_k(\mathbf{x}) := \sum_{i:(i,k)\in A} x_{ik} - \sum_{j:(k,j)\in A} x_{kj}.$$

In a network flow problem, we want $\Delta_k(\mathbf{x}) = 0$ for $k \neq s, t$. We want to maximize $\Delta_t(\mathbf{x})$.

In a supply/demand problem, there is no source or sink. We have a vector **d** of demands. For *every* node k, we want $\Delta_k(\mathbf{x}) = d_k$.

 When d_k < 0, k is a supply node: it has extra flow it wants to get rid of.

• When $d_k > 0$, k is a *demand node*: it wants more entering than leaving flow.

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 000
Properties	s of supply/demand j	problems	

Observations:

• The supply/demand problem is a feasibility problem: we have no objective function, we just want to see if it's possible to satisfy all demands.

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O	0●00		000
Propertie	s of supply/demand	problems	

Observations:

- The supply/demand problem is a feasibility problem: we have no objective function, we just want to see if it's possible to satisfy all demands.
- We know it's impossible if $\sum_{k \in N} d_k \neq 0$. Total supply must equal total demand!

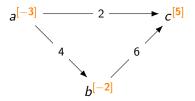
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O	○●○○		000
Propertie	s of supply/demand	problems	

Observations:

- The supply/demand problem is a feasibility problem: we have no objective function, we just want to see if it's possible to satisfy all demands.
- We know it's impossible if $\sum_{k \in N} d_k \neq 0$. Total supply must equal total demand!

Example problem:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

We solve supply/demand problems by turning them into an equivalent max-flow problem. Then, we solve the max-flow problem and undo the transformation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

We solve supply/demand problems by turning them into an equivalent max-flow problem. Then, we solve the max-flow problem and undo the transformation.

Rule for constructing the max-flow instance:

Add new nodes s and t.

Rule for constructing the max-flow instance:

- $\bigcirc Add new nodes s and t.$
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .

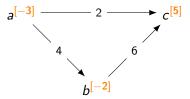
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Rule for constructing the max-flow instance:

- **O** Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.

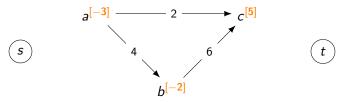
Rule for constructing the max-flow instance:

- Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.



Rule for constructing the max-flow instance:

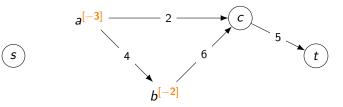
- Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

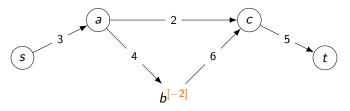
Rule for constructing the max-flow instance:

- Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.



Rule for constructing the max-flow instance:

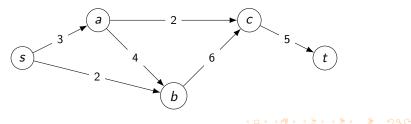
- Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Rule for constructing the max-flow instance:

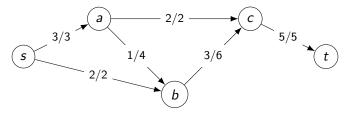
- Add new nodes s and t.
- **②** For every k with $d_k > 0$, add an arc (k, t) with capacity d_k .
- So For every k with $d_k < 0$, add an arc (s, k) with capacity $-d_k$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

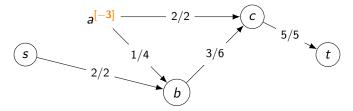
If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.

If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.

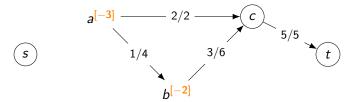


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.

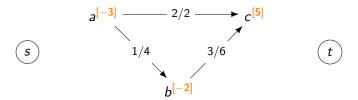


If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.



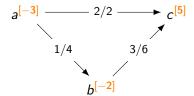
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

If this happens, we get the supply/demand solution by erasing nodes s, t and all their arcs.



Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		●000	000
Feasible circ	ulation		

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		●000	000
Feasible circ	ulation		

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• We want flow conservation to hold at every node.

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings		
O		●000	000		
Feasible circulation					

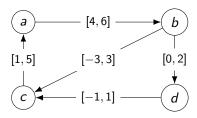
- We want flow conservation to hold at every node.
- However, the arcs now have lower and upper bounds: for each arc (i, j), we're given an interval $[a_{ij}, b_{ij}]$ and ask that $a_{ij} \le x_{ij} \le b_{ij}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings		
0		●000	000		
Feasible circulation					

- We want flow conservation to hold at every node.
- However, the arcs now have lower and upper bounds: for each arc (i, j), we're given an interval $[a_{ij}, b_{ij}]$ and ask that $a_{ij} \le x_{ij} \le b_{ij}$.

Example problem:



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings			
O		0●00	000			
Reducing feasible circulation to supply/demand						

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Rules for constructing the supply/demand problem:

• Start by setting $d_k = 0$ for all k.

Rules for constructing the supply/demand problem:

- Start by setting $d_k = 0$ for all k.
- **②** For every arc (i, j) with interval $[a_{ij}, b_{ij}]$, instead give it $c_{ij} = b_{ij} a_{ij} \dots$

 \bigcirc ... but add a_{ij} to d_i , and subtract a_{ij} from d_j .

Rules for constructing the supply/demand problem:

- Start by setting $d_k = 0$ for all k.
- For every arc (i, j) with interval [a_{ij}, b_{ij}], instead give it c_{ij} = b_{ij} - a_{ij}...
- \bigcirc ... but add a_{ij} to d_i , and subtract a_{ij} from d_j .

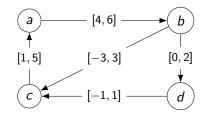
In the end, each node k has

$$d_k = \sum_{j:(k,j)\in A} a_{kj} - \sum_{i:(i,k)\in A} a_{ik}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

(We could skip directly to this step.)

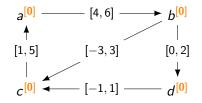
Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		00●0	000
Example of	the reduction		



We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ うへつ

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
0		00●0	000
Example o	f the reduction		

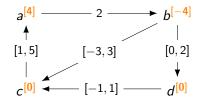


We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
0		00●0	000
Example of	the reduction		

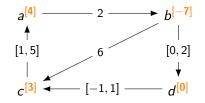


We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

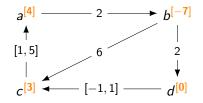
Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
0		00●0	000
Example of	the reduction		



We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

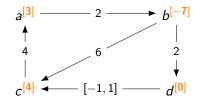
Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		00●0	000
Example of	the reduction		



We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

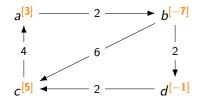
Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		00●0	000
Example of	the reduction		



We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		00●0	000
Example of	the reduction		



We'd solve the resulting supply/demand problem by adding a source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to a feasible circulation.

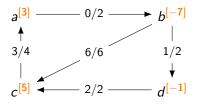
◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

Introduction	Supply and demand problems	Feasible circulations	Bipartite matchings
O		000●	000
Converting	back to a feasible c	irculation	

If the supply/demand problem is solved by a flow \mathbf{y} , the feasible circulation we want is \mathbf{x} , where $x_{ij} = y_{ij} + a_{ij}$.

Converting back to a feasible circulation

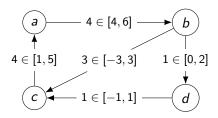
If the supply/demand problem is solved by a flow **y**, the feasible circulation we want is **x**, where $x_{ij} = y_{ij} + a_{ij}$.



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow **y**, the feasible circulation we want is **x**, where $x_{ij} = y_{ij} + a_{ij}$.

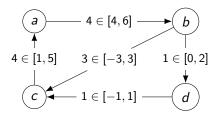


Before the conversion: for each k,

$$\sum_{(i,k)\in A} y_{ik} - \sum_{(k,j)\in A} y_{kj} = d_k$$

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow **y**, the feasible circulation we want is **x**, where $x_{ij} = y_{ij} + a_{ij}$.



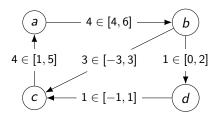
Before the conversion: for each k,

$$\sum_{(i,k)\in A} y_{ik} - \sum_{(k,j)\in A} y_{kj} = d_k = \sum_{j:(k,j)\in A} a_{kj} - \sum_{i:(i,k)\in A} a_{ik}.$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ④

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow **y**, the feasible circulation we want is **x**, where $x_{ij} = y_{ij} + a_{ij}$.



Before the conversion: for each k,

$$\sum_{(i,k)\in A} y_{ik} - \sum_{(k,j)\in A} y_{kj} = d_k = \sum_{j:(k,j)\in A} a_{kj} - \sum_{i:(i,k)\in A} a_{ik}.$$

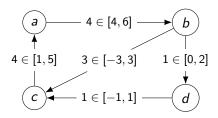
Therefore

$$\sum_{(i,k)\in A} (y_{ik} + a_{ik}) - \sum_{(k,j)\in A} (y_{kj} + a_{kj}) = 0$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow **y**, the feasible circulation we want is **x**, where $x_{ij} = y_{ij} + a_{ij}$.



Before the conversion: for each k,

$$\sum_{(i,k)\in A} y_{ik} - \sum_{(k,j)\in A} y_{kj} = d_k = \sum_{j:(k,j)\in A} a_{kj} - \sum_{i:(i,k)\in A} a_{ik}.$$

Therefore

$$\sum_{(i,k)\in A} (y_{ik} + a_{ik}) - \sum_{(k,j)\in A} (y_{kj} + a_{kj}) = 0 \implies \Delta_k(\mathbf{x}) = 0.$$

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings ●00
Bipartite r	natchings		

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings ●00
Bipartite n	natchings		

Given a bipartite graph (A, B, E), we:

Output Construct a network with nodes $A \cup B \cup \{s, t\}$.

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings ●00
Bipartite n	natchings		

Given a bipartite graph (A, B, E), we:

- **Output** Construct a network with nodes $A \cup B \cup \{s, t\}$.
- **2** For every edge $(i,j) \in E$, add an arc (i,j) with $c_{ij} = \infty$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings ●00
Bipartite m	natchings		

Given a bipartite graph (A, B, E), we:

- **Output** Construct a network with nodes $A \cup B \cup \{s, t\}$.
- **②** For every edge $(i,j) \in E$, add an arc (i,j) with $c_{ij} = \infty$.
- So For every vertex $i \in A$, add an arc (s, i) with $c_{si} = 1$.
- For every vertex $j \in B$, add an arc (j, t) with $c_{jt} = 1$.

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings ●00
Bipartite m	atchings		

Given a bipartite graph (A, B, E), we:

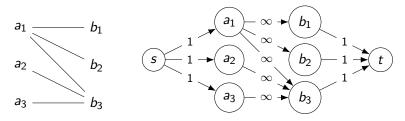
- **Output** Construct a network with nodes $A \cup B \cup \{s, t\}$.
- **②** For every edge $(i,j) \in E$, add an arc (i,j) with $c_{ij} = \infty$.
- So For every vertex $i \in A$, add an arc (s, i) with $c_{si} = 1$.
- For every vertex $j \in B$, add an arc (j, t) with $c_{jt} = 1$.

An maximum flow will send 1 flow along every edge in a matching, and 0 flow along all other edges.

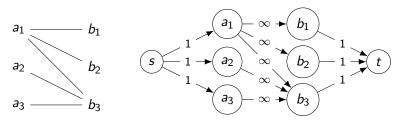
Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 0●0
Bipartite (natching example		



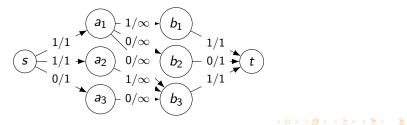
Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 0●0
Bipartite m	atching example		



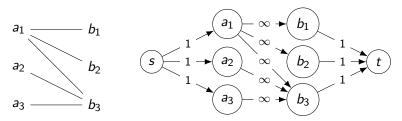
Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 0●0
Bipartite	matching example		



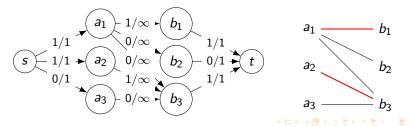
Going from a maximum flow to a maximum matching:



Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 0●0
Bipartite (matching example		

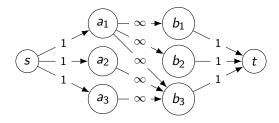


Going from a maximum flow to a maximum matching:

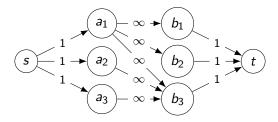


 $\mathcal{O} \land \mathcal{O}$

Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 00●
Minimum	cuts and vertex cove	ers	



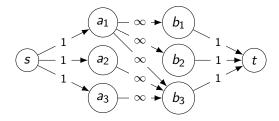
Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 00●
Minimum	cuts and vertex cove	rs	



イロト 不得 トイヨト イヨト ヨー ろくで

A cut is *really bad* if one of the ∞ arcs crosses the cut.

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 00●
Minimum	cuts and vertex cove	rs	

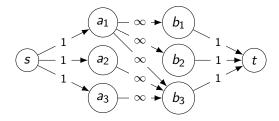


イロト 不得 トイヨト イヨト ヨー ろくで

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from $A \cap S$ to $B \cap T$.

Introduction 0	Supply and demand problems	Feasible circulations	Bipartite matchings 00●
Minimum	cuts and vertex cove	rs	

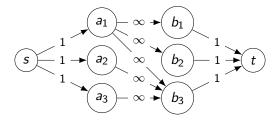


◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

A cut is *really bad* if one of the ∞ arcs crosses the cut. So there are no arcs from $A \cap S$ to $B \cap T$.

So together, $A \cap T$ and $B \cap S$ form a vertex cover.

Introduction O	Supply and demand problems	Feasible circulations	Bipartite matchings 00●
Minimum	cuts and vertex cove	rs	



A cut is *really bad* if one of the ∞ arcs crosses the cut.

So there are no arcs from $A \cap S$ to $B \cap T$.

So together, $A \cap T$ and $B \cap S$ form a vertex cover. We can check that the capacity of such a cut (S, T) is $|A \cap T| + |B \cap S|$: the number of vertices in the cover.