
Introduction Supply and demand problems Feasible circulations Bipartite matchings

Variations on Max-Flow Problems
Math 482, Lecture 27

Misha Lavrov

April 8, 2020

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Plan for the lecture

The goal of today is to talk about several problems which can be
reduced to max-flow problems (and solved using max-flow
algorithms).

Problems we’ll consider:

Supply and demand problems.

Finding feasible flows with lower and upper bounds.

Bipartite matchings and vertex covers (again).

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Plan for the lecture

The goal of today is to talk about several problems which can be
reduced to max-flow problems (and solved using max-flow
algorithms).

Problems we’ll consider:

Supply and demand problems.

Finding feasible flows with lower and upper bounds.

Bipartite matchings and vertex covers (again).

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Plan for the lecture

The goal of today is to talk about several problems which can be
reduced to max-flow problems (and solved using max-flow
algorithms).

Problems we’ll consider:

Supply and demand problems.

Finding feasible flows with lower and upper bounds.

Bipartite matchings and vertex covers (again).

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Plan for the lecture

The goal of today is to talk about several problems which can be
reduced to max-flow problems (and solved using max-flow
algorithms).

Problems we’ll consider:

Supply and demand problems.

Finding feasible flows with lower and upper bounds.

Bipartite matchings and vertex covers (again).

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Posing a supply/demand problem

Recall: given a network (N,A), a flow x, and a node k ∈ N, the
excess at k is

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

In a network flow problem, we want ∆k(x) = 0 for k 6= s, t. We
want to maximize ∆t(x).

In a supply/demand problem, there is no source or sink. We have a
vector d of demands. For every node k , we want ∆k(x) = dk .

When dk < 0, k is a supply node: it has extra flow it wants to
get rid of.

When dk > 0, k is a demand node: it wants more entering
than leaving flow.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Posing a supply/demand problem

Recall: given a network (N,A), a flow x, and a node k ∈ N, the
excess at k is

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

In a network flow problem, we want ∆k(x) = 0 for k 6= s, t. We
want to maximize ∆t(x).

In a supply/demand problem, there is no source or sink. We have a
vector d of demands. For every node k , we want ∆k(x) = dk .

When dk < 0, k is a supply node: it has extra flow it wants to
get rid of.

When dk > 0, k is a demand node: it wants more entering
than leaving flow.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Posing a supply/demand problem

Recall: given a network (N,A), a flow x, and a node k ∈ N, the
excess at k is

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

In a network flow problem, we want ∆k(x) = 0 for k 6= s, t. We
want to maximize ∆t(x).

In a supply/demand problem, there is no source or sink. We have a
vector d of demands. For every node k , we want ∆k(x) = dk .

When dk < 0, k is a supply node: it has extra flow it wants to
get rid of.

When dk > 0, k is a demand node: it wants more entering
than leaving flow.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Posing a supply/demand problem

Recall: given a network (N,A), a flow x, and a node k ∈ N, the
excess at k is

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

In a network flow problem, we want ∆k(x) = 0 for k 6= s, t. We
want to maximize ∆t(x).

In a supply/demand problem, there is no source or sink. We have a
vector d of demands. For every node k , we want ∆k(x) = dk .

When dk < 0, k is a supply node: it has extra flow it wants to
get rid of.

When dk > 0, k is a demand node: it wants more entering
than leaving flow.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Properties of supply/demand problems

Observations:

The supply/demand problem is a feasibility problem: we have
no objective function, we just want to see if it’s possible to
satisfy all demands.

We know it’s impossible if
∑

k∈N dk 6= 0. Total supply must
equal total demand!

Example problem:

a[−3]

b[−2]

c [5]2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Properties of supply/demand problems

Observations:

The supply/demand problem is a feasibility problem: we have
no objective function, we just want to see if it’s possible to
satisfy all demands.

We know it’s impossible if
∑

k∈N dk 6= 0. Total supply must
equal total demand!

Example problem:

a[−3]

b[−2]

c [5]2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Properties of supply/demand problems

Observations:

The supply/demand problem is a feasibility problem: we have
no objective function, we just want to see if it’s possible to
satisfy all demands.

We know it’s impossible if
∑

k∈N dk 6= 0. Total supply must
equal total demand!

Example problem:

a[−3]

b[−2]

c [5]2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c [5]

t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c [5]

t

2

4 6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c

t

2

4 6

5

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a

b[−2]

c

t

2

4 6

53

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a

b

c

t

2

4 6

53

2

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

2/2

1/4 3/6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

2/2

1/4 3/6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

s

a

b

c

t

2/2

1/4 3/6

5/53/3

2/2

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

s

a[−3]

b

c

t

2/2

1/4 3/6

5/5

2/2

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

s

a[−3]

b[−2]

c

t

2/2

1/4 3/6

5/5

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

s

a[−3]

b[−2]

c [5]

t

2/2

1/4 3/6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

a[−3]

b[−2]

c [5]2/2

1/4 3/6

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Feasible circulation

The feasible circulation problem is, again, a feasibility problem in a
network with no source or sink.

We want flow conservation to hold at every node.

However, the arcs now have lower and upper bounds: for each
arc (i , j), we’re given an interval [aij , bij] and ask that
aij ≤ xij ≤ bij .

Example problem:

a b

c d

[4, 6]

[0, 2]

[−1, 1]

[1, 5] [−3, 3]

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Feasible circulation

The feasible circulation problem is, again, a feasibility problem in a
network with no source or sink.

We want flow conservation to hold at every node.

However, the arcs now have lower and upper bounds: for each
arc (i , j), we’re given an interval [aij , bij] and ask that
aij ≤ xij ≤ bij .

Example problem:

a b

c d

[4, 6]

[0, 2]

[−1, 1]

[1, 5] [−3, 3]

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Feasible circulation

The feasible circulation problem is, again, a feasibility problem in a
network with no source or sink.

We want flow conservation to hold at every node.

However, the arcs now have lower and upper bounds: for each
arc (i , j), we’re given an interval [aij , bij] and ask that
aij ≤ xij ≤ bij .

Example problem:

a b

c d

[4, 6]

[0, 2]

[−1, 1]

[1, 5] [−3, 3]

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Feasible circulation

The feasible circulation problem is, again, a feasibility problem in a
network with no source or sink.

We want flow conservation to hold at every node.

However, the arcs now have lower and upper bounds: for each
arc (i , j), we’re given an interval [aij , bij] and ask that
aij ≤ xij ≤ bij .

Example problem:

a b

c d

[4, 6]

[0, 2]

[−1, 1]

[1, 5] [−3, 3]

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing feasible circulation to supply/demand

We solve feasible circulation problems by turning them into an
equivalent supply/demand problem (which we now understand).

Rules for constructing the supply/demand problem:

1 Start by setting dk = 0 for all k .

2 For every arc (i , j) with interval [aij , bij], instead give it
cij = bij − aij . . .

3 . . . but add aij to di , and subtract aij from dj .

4 In the end, each node k has

dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

(We could skip directly to this step.)

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing feasible circulation to supply/demand

We solve feasible circulation problems by turning them into an
equivalent supply/demand problem (which we now understand).

Rules for constructing the supply/demand problem:

1 Start by setting dk = 0 for all k .

2 For every arc (i , j) with interval [aij , bij], instead give it
cij = bij − aij . . .

3 . . . but add aij to di , and subtract aij from dj .

4 In the end, each node k has

dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

(We could skip directly to this step.)

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing feasible circulation to supply/demand

We solve feasible circulation problems by turning them into an
equivalent supply/demand problem (which we now understand).

Rules for constructing the supply/demand problem:

1 Start by setting dk = 0 for all k .

2 For every arc (i , j) with interval [aij , bij], instead give it
cij = bij − aij . . .

3 . . . but add aij to di , and subtract aij from dj .

4 In the end, each node k has

dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

(We could skip directly to this step.)

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing feasible circulation to supply/demand

We solve feasible circulation problems by turning them into an
equivalent supply/demand problem (which we now understand).

Rules for constructing the supply/demand problem:

1 Start by setting dk = 0 for all k .

2 For every arc (i , j) with interval [aij , bij], instead give it
cij = bij − aij . . .

3 . . . but add aij to di , and subtract aij from dj .

4 In the end, each node k has

dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

(We could skip directly to this step.)

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a b

c d

[4, 6]

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[0] b[0]

c [0] d [0]

[4, 6]

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[4] b[−4]

c [0] d [0]

2

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[4] b[−7]

c [3] d [0]

2

6 [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[4] b[−7]

c [3] d [0]

2

6 2[1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[3] b[−7]

c [4] d [0]

2

6 24

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Example of the reduction

Here is an example:

a[3] b[−7]

c [5] d [−1]

2

6 24

2

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

a[3] b[−7]

c [5] d [−1]

3/4

0/2

6/6 1/2

2/2

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

a b

c d

4 ∈ [1, 5]

4 ∈ [4, 6]

3 ∈ [−3, 3] 1 ∈ [0, 2]

1 ∈ [−1, 1]

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk

=
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

a b

c d

4 ∈ [1, 5]

4 ∈ [4, 6]

3 ∈ [−3, 3] 1 ∈ [0, 2]

1 ∈ [−1, 1]

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

a b

c d

4 ∈ [1, 5]

4 ∈ [4, 6]

3 ∈ [−3, 3] 1 ∈ [0, 2]

1 ∈ [−1, 1]

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0

=⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

a b

c d

4 ∈ [1, 5]

4 ∈ [4, 6]

3 ∈ [−3, 3] 1 ∈ [0, 2]

1 ∈ [−1, 1]

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matching example

Going from the bipartite graph to a network:

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

Going from a maximum flow to a maximum matching:

s

a1

a2

a3

b1

b2

b3

t

1/1

1/1

0/1

1/∞
0/∞
0/∞
1/∞
0/∞

1/1

0/1

1/1

a1

a2

a3

b1

b2

b3

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matching example

Going from the bipartite graph to a network:

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

Going from a maximum flow to a maximum matching:

s

a1

a2

a3

b1

b2

b3

t

1/1

1/1

0/1

1/∞
0/∞
0/∞
1/∞
0/∞

1/1

0/1

1/1

a1

a2

a3

b1

b2

b3

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matching example

Going from the bipartite graph to a network:

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

Going from a maximum flow to a maximum matching:

s

a1

a2

a3

b1

b2

b3

t

1/1

1/1

0/1

1/∞
0/∞
0/∞
1/∞
0/∞

1/1

0/1

1/1

a1

a2

a3

b1

b2

b3

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Bipartite matching example

Going from the bipartite graph to a network:

a1

a2

a3

b1

b2

b3

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

Going from a maximum flow to a maximum matching:

s

a1

a2

a3

b1

b2

b3

t

1/1

1/1

0/1

1/∞
0/∞
0/∞
1/∞
0/∞

1/1

0/1

1/1

a1

a2

a3

b1

b2

b3

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Minimum cuts and vertex covers

What does a cut look like in this picture?

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover. We can check
that the capacity of such a cut (S ,T) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Minimum cuts and vertex covers

What does a cut look like in this picture?

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover. We can check
that the capacity of such a cut (S ,T) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Minimum cuts and vertex covers

What does a cut look like in this picture?

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover. We can check
that the capacity of such a cut (S ,T) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Minimum cuts and vertex covers

What does a cut look like in this picture?

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover.

We can check
that the capacity of such a cut (S ,T) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.

Introduction Supply and demand problems Feasible circulations Bipartite matchings

Minimum cuts and vertex covers

What does a cut look like in this picture?

s

a1

a2

a3

b1

b2

b3

t

1

1

1

∞
∞
∞
∞
∞

1

1

1

A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover. We can check
that the capacity of such a cut (S ,T) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.

	Introduction
	Supply and demand problems
	Feasible circulations
	Bipartite matchings

