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Plan for the lecture

The goal of today is to talk about several problems which can be
reduced to max-flow problems (and solved using max-flow
algorithms).

Problems we’ll consider:

Supply and demand problems.

Finding feasible flows with lower and upper bounds.

Bipartite matchings and vertex covers (again).
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Posing a supply/demand problem

Recall: given a network (N,A), a flow x, and a node k ∈ N, the
excess at k is

∆k(x) :=
∑

i :(i ,k)∈A

xik −
∑

j :(k,j)∈A

xkj .

In a network flow problem, we want ∆k(x) = 0 for k 6= s, t. We
want to maximize ∆t(x).

In a supply/demand problem, there is no source or sink. We have a
vector d of demands. For every node k , we want ∆k(x) = dk .

When dk < 0, k is a supply node: it has extra flow it wants to
get rid of.

When dk > 0, k is a demand node: it wants more entering
than leaving flow.
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Properties of supply/demand problems

Observations:

The supply/demand problem is a feasibility problem: we have
no objective function, we just want to see if it’s possible to
satisfy all demands.

We know it’s impossible if
∑

k∈N dk 6= 0. Total supply must
equal total demand!

Example problem:

a[−3]

b[−2]

c [5]2

4 6
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Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c [5]

t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c [5]

t

2

4 6



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a[−3]

b[−2]

c

t

2

4 6

5



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a

b[−2]

c

t

2

4 6

53



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Reducing supply/demand problems to max-flow

We solve supply/demand problems by turning them into an
equivalent max-flow problem. Then, we solve the max-flow
problem and undo the transformation.

Rule for constructing the max-flow instance:

1 Add new nodes s and t.

2 For every k with dk > 0, add an arc (k , t) with capacity dk .

3 For every k with dk < 0, add an arc (s, k) with capacity −dk .

s

a

b

c

t

2

4 6

53

2



Introduction Supply and demand problems Feasible circulations Bipartite matchings

Going from max-flow back to supply/demand

The supply/demand problem is only feasible if all the arcs into t
are at capacity in the maximum flow. (Then, all arcs out of s will
also be at capacity.)

If this happens, we get the supply/demand solution by erasing
nodes s, t and all their arcs.

2/2

1/4 3/6
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Feasible circulation

The feasible circulation problem is, again, a feasibility problem in a
network with no source or sink.

We want flow conservation to hold at every node.

However, the arcs now have lower and upper bounds: for each
arc (i , j), we’re given an interval [aij , bij ] and ask that
aij ≤ xij ≤ bij .

Example problem:

a b

c d

[4, 6]

[0, 2]

[−1, 1]

[1, 5] [−3, 3]
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Reducing feasible circulation to supply/demand

We solve feasible circulation problems by turning them into an
equivalent supply/demand problem (which we now understand).

Rules for constructing the supply/demand problem:

1 Start by setting dk = 0 for all k .

2 For every arc (i , j) with interval [aij , bij ], instead give it
cij = bij − aij . . .

3 . . . but add aij to di , and subtract aij from dj .

4 In the end, each node k has

dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

(We could skip directly to this step.)
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Example of the reduction

Here is an example:

a b

c d

[4, 6]

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.
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Here is an example:

a[0] b[0]

c [0] d [0]

[4, 6]

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.
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Example of the reduction

Here is an example:

a[4] b[−4]

c [0] d [0]

2

[−3, 3] [0, 2][1, 5]

[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.
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Here is an example:
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c [3] d [0]

2
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[−1, 1]

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.
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Example of the reduction

Here is an example:

a[3] b[−7]

c [5] d [−1]

2

6 24

2

We’d solve the resulting supply/demand problem by adding a
source s, a sink t, and arcs from s or to t, as we discussed earlier.

Then, we need to convert the resulting supply/demand solution to
a feasible circulation.
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Converting back to a feasible circulation

If the supply/demand problem is solved by a flow y, the feasible
circulation we want is x, where xij = yij + aij .

Before the conversion: for each k ,∑
(i ,k)∈A

yik −
∑

(k,j)∈A

ykj = dk =
∑

j :(k,j)∈A

akj −
∑

i :(i ,k)∈A

aik .

Therefore∑
(i ,k)∈A

(yik + aik)−
∑

(k,j)∈A

(ykj + akj) = 0 =⇒ ∆k(x) = 0.
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3/4

0/2

6/6 1/2

2/2
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Bipartite matchings

We have already seen the bipartite matching problem. But we can
convert it to a network flow problem, which lets us solve it using
Ford–Fulkerson, instead of using linear programming.

Given a bipartite graph (A,B,E ), we:

1 Construct a network with nodes A ∪ B ∪ {s, t}.

2 For every edge (i , j) ∈ E , add an arc (i , j) with cij =∞.

3 For every vertex i ∈ A, add an arc (s, i) with csi = 1.

4 For every vertex j ∈ B, add an arc (j , t) with cjt = 1.

An maximum flow will send 1 flow along every edge in a matching,
and 0 flow along all other edges.
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Bipartite matching example
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Minimum cuts and vertex covers

What does a cut look like in this picture?
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A cut is really bad if one of the ∞ arcs crosses the cut.

So there are no arcs from A ∩ S to B ∩ T .

So together, A ∩ T and B ∩ S form a vertex cover. We can check
that the capacity of such a cut (S ,T ) is |A ∩ T |+ |B ∩ S |: the
number of vertices in the cover.
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