Intro 00	duction		Finding an initial feasible solution

Minimum-Cost Flow Math 482, Lecture 28

Misha Lavrov

April 10, 2020

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
●○	0000	000	
The min-cost	flow problem		

In this problem, we are given:

• a network (N, A) with no source or sink.

- a network (N, A) with no source or sink.
- A demand d_k for every node (as in a supply-demand problem).

イロト イボト イヨト イヨト ヨー のくや

- a network (N, A) with no source or sink.
- A demand d_k for every node (as in a supply-demand problem).

• Instead of a *capacity* c_{ij} for every arc $(i, j) \in A$, a *cost* c_{ij} .

- a network (N, A) with no source or sink.
- A demand d_k for every node (as in a supply-demand problem).
- Instead of a *capacity* c_{ij} for every arc $(i, j) \in A$, a *cost* c_{ij} .

Goal: minimize $\sum_{(i,j)\in A} c_{ij} x_{ij}$ while satisfying $\Delta_k(\mathbf{x}) = d_k$ for every node k (and $\mathbf{x} \ge \mathbf{0}$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- a network (N, A) with no source or sink.
- A demand d_k for every node (as in a supply-demand problem).
- Instead of a *capacity* c_{ij} for every arc $(i, j) \in A$, a *cost* c_{ij} .

Goal: minimize $\sum_{(i,j)\in A} c_{ij}x_{ij}$ while satisfying $\Delta_k(\mathbf{x}) = d_k$ for every node k (and $\mathbf{x} \ge \mathbf{0}$).

Example:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

To figure out how to do this, we need to know several things:

• What a basic solution looks like.

To figure out how to do this, we need to know several things:

- What a basic solution looks like.
- How to do a pivoting step.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

To figure out how to do this, we need to know several things:

- What a basic solution looks like.
- How to do a pivoting step.
- How to determine the reduced costs of an arc.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	●000	000	
Number of b	asic variables		

 F is a |N| × |A| matrix where x_{ij}'s column has a 1 in row j and a −1 in row i.

• **d** is the vector of demands.

- F is a |N| × |A| matrix where x_{ij}'s column has a 1 in row j and a −1 in row i.
- **d** is the vector of demands.

Normally, a basic solution would be given by $\mathbf{x} = F_{\mathcal{B}}^{-1}\mathbf{d}$ for some choice of |N| variables \mathcal{B} .

- F is a |N| × |A| matrix where x_{ij}'s column has a 1 in row j and a −1 in row i.
- **d** is the vector of demands.

Normally, a basic solution would be given by $\mathbf{x} = F_{\mathcal{B}}^{-1}\mathbf{d}$ for some choice of |N| variables \mathcal{B} .

Here, one equation is redundant: assuming $\sum_{k \in N} d_k = 0$, the equations add up to 0 = 0. (If the sum is not 0, there is no solution.)

- F is a |N| × |A| matrix where x_{ij}'s column has a 1 in row j and a −1 in row i.
- **d** is the vector of demands.

Normally, a basic solution would be given by $\mathbf{x} = F_{\mathcal{B}}^{-1}\mathbf{d}$ for some choice of |N| variables \mathcal{B} .

Here, one equation is redundant: assuming $\sum_{k \in N} d_k = 0$, the equations add up to 0 = 0. (If the sum is not 0, there is no solution.)

So our basis will have $|{\it N}|-1$ variables, assuming the network is connected.^1

Introduction 00	Basic solutions 0●00	Pivoting steps	Finding an initial feasible solution
Spanning	trees		

Definition

A spanning tree of (N, A) is a choice of |N| - 1 arcs forming a connected subnetwork. (For us, connectivity ignores direction.)

▲□▶ ▲□▶ ▲目▶ ▲目▶ | 目| のへの

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0●00	000	
Spanning	trees		

Definition

A spanning tree of (N, A) is a choice of |N| - 1 arcs forming a connected subnetwork. (For us, connectivity ignores direction.)

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0●00	000	
Spanning	trees		

Definition

A spanning tree of (N, A) is a choice of |N| - 1 arcs forming a connected subnetwork. (For us, connectivity ignores direction.)

Claim: |N| - 1 variables form a basis exactly when their arcs make a spanning tree.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Introduction 00	Basic solutions 00●0	Pivoting steps	Finding an initial feasible solution
Why spanr	ing trees?		

- Q1. Why is being a spanning tree necessary to be a basis?
- **A1.** If there are two pieces, then not all systems $F\mathbf{x} = \mathbf{d}$ with $\sum_{k \in N} d_k = 0$ have solutions. We must have the d_k sum to 0 on each piece!

A1. If there are two pieces, then not all systems $F\mathbf{x} = \mathbf{d}$ with $\sum_{k \in N} d_k = 0$ have solutions. We must have the d_k sum to 0 on each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A1. If there are two pieces, then not all systems $F\mathbf{x} = \mathbf{d}$ with $\sum_{k \in N} d_k = 0$ have solutions. We must have the d_k sum to 0 on each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution using only arcs in a spanning tree.

A1. If there are two pieces, then not all systems $F\mathbf{x} = \mathbf{d}$ with $\sum_{k \in N} d_k = 0$ have solutions. We must have the d_k sum to 0 on each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution using only arcs in a spanning tree.

This will give us an **x** such that $F\mathbf{x} = \mathbf{d}$, but not necessarily $\mathbf{x} \ge \mathbf{0}$.

Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

2 Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

Solve for x_{12} using node 1

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

Solve for x_{23} using node 2

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

Solve for x_{43} using node 4

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

Solve for x_{63} using node 3

- Pick a node k with only one arc of the spanning tree with unknown flow in/out of k.
- **②** Solve for that remaining flow to make $\Delta_k(\mathbf{x}) = d_k$.

Solve for x_{56} using node 5

	ut pivoting step		
00	0000	•00	000
Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution

• We should be able to add any arc we want, and remove an existing arc to get another spanning tree.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	●00	
Ideas abo	ut pivoting step)S	

- We should be able to add any arc we want, and remove an existing arc to get another spanning tree.
- If we have a basic feasible solution $(F\mathbf{x} = \mathbf{d}, \mathbf{x} \ge \mathbf{0})$ before the pivot, that should stay true after the pivot.

・ロト・日本・ヨト・ヨト・日・ つへぐ

Ideas abo	ut pivoting step		
Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	●○○	

- We should be able to add any arc we want, and remove an existing arc to get another spanning tree.
- If we have a basic feasible solution $(F\mathbf{x} = \mathbf{d}, \mathbf{x} \ge \mathbf{0})$ before the pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many new solutions.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	●00	
Ideas abo	ut pivoting step	S	

- We should be able to add any arc we want, and remove an existing arc to get another spanning tree.
- If we have a basic feasible solution $(F\mathbf{x} = \mathbf{d}, \mathbf{x} \ge \mathbf{0})$ before the pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many new solutions.

One of those solutions will have flow $x_{ij} = 0$ for an existing arc (i, j).

Once we've picked an arc (i, j) we're adding to the basis:

Q Find the cycle formed by that arc and the spanning tree.

Once we've picked an arc (i, j) we're adding to the basis:

- **Q** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.

Once we've picked an arc (i, j) we're adding to the basis:

- Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

③ Find the smallest δ that sets an existing arc to 0.

- **9** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.
- **③** Find the smallest δ that sets an existing arc to 0.

- **9** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.
- **③** Find the smallest δ that sets an existing arc to 0.

- **9** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.
- **③** Find the smallest δ that sets an existing arc to 0.

- **9** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.
- **③** Find the smallest δ that sets an existing arc to 0.

イロト 不得 トイヨト イヨト ヨー わらぐ

- **9** Find the cycle formed by that arc and the spanning tree.
- Set x_{ij} = δ. For each arc on the cycle, add δ if it has the same direction around the cycle as (i, j), subtract δ otherwise.
- **③** Find the smallest δ that sets an existing arc to 0.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	00●	
Reduced cos	ts		

Q. How can we compute the reduced cost of an arc we're adding?

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	00●	
Reduced cos	ts		

Q. How can we compute the reduced cost of an arc we're adding? **A.** Look at the $\pm \delta$ changes and multiply them by the costs of the

arcs.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	00●	
Reduced cos	ts		

Q. How can we compute the reduced cost of an arc we're adding? **A.** Look at the $\pm \delta$ changes and multiply them by the costs of the arcs.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	00●	
Reduced cos	sts		

Q. How can we compute the reduced cost of an arc we're adding? **A.** Look at the $\pm \delta$ changes and multiply them by the costs of the arcs.

Introduction	Basic solutions	Pivoting steps	Finding an initial feasible solution
00	0000	00●	
Reduced cos	sts		

Q. How can we compute the reduced cost of an arc we're adding? **A.** Look at the $\pm \delta$ changes and multiply them by the costs of the arcs.

Total change in cost: $\delta \times (2+3+1-1) = 5\delta$, so the reduced cost of x_{45} is 5.

The two-phase simplex method:

Add artificial variables to each constraint, so that we get a basic feasible solution using only artificial variables.

Add an artificial objective function that tries to force out those variables.

The two-phase simplex method:

 Add artificial variables to each constraint, so that we get a basic feasible solution using only artificial variables.

Add an artificial node *a*. For each node *k*: if $d_k > 0$, add arc (a, k) with $x_{ak} = d_k$; if $d_k < 0$, add arc (k, a) with $x_{ka} = |d_k|$.

Add an artificial objective function that tries to force out those variables.

The two-phase simplex method:

 Add artificial variables to each constraint, so that we get a basic feasible solution using only artificial variables.

Add an artificial node *a*. For each node *k*: if $d_k > 0$, add arc (a, k) with $x_{ak} = d_k$; if $d_k < 0$, add arc (k, a) with $x_{ka} = |d_k|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

Add an artificial objective function that tries to force out those variables.

Set the cost to \$1 for artificial arcs, \$0 for original arcs.

Example of the first phase

Original min-cost flow problem:

Introduction Basic solutions Pivoting steps Finding an initial feasible solution ooo

Example of the first phase

Original min-cost flow problem:

Initial spanning tree for the phase-one problem:

Here:

• Any spanning tree with the artificial node *a* in it must include some arc in or out of *a*, to be connected.

Here:

- Any spanning tree with the artificial node *a* in it must include some arc in or out of *a*, to be connected.
- We stop when there is only one arc in or out of *a* left in the spanning tree.

Here:

- Any spanning tree with the artificial node *a* in it must include some arc in or out of *a*, to be connected.
- We stop when there is only one arc in or out of *a* left in the spanning tree.
- Because we want $\Delta_a(\mathbf{x}) = d_a = 0$, that arc must have flow 0.

Here:

- Any spanning tree with the artificial node *a* in it must include some arc in or out of *a*, to be connected.
- We stop when there is only one arc in or out of *a* left in the spanning tree.
- Because we want $\Delta_a(\mathbf{x}) = d_a = 0$, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we're left with a basic feasible solution to the original problem.