
Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Minimum-Cost Flow
Math 482, Lecture 28

Misha Lavrov

April 10, 2020

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The min-cost flow problem

In this problem, we are given:

a network (N,A) with no source or sink.

A demand dk for every node (as in a supply-demand problem).

Instead of a capacity cij for every arc (i , j) ∈ A, a cost cij .

Goal: minimize
∑

(i ,j)∈A cijxij while satisfying ∆k(x) = dk for every
node k (and x ≥ 0).

Example:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The min-cost flow problem

In this problem, we are given:

a network (N,A) with no source or sink.

A demand dk for every node (as in a supply-demand problem).

Instead of a capacity cij for every arc (i , j) ∈ A, a cost cij .

Goal: minimize
∑

(i ,j)∈A cijxij while satisfying ∆k(x) = dk for every
node k (and x ≥ 0).

Example:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The min-cost flow problem

In this problem, we are given:

a network (N,A) with no source or sink.

A demand dk for every node (as in a supply-demand problem).

Instead of a capacity cij for every arc (i , j) ∈ A, a cost cij .

Goal: minimize
∑

(i ,j)∈A cijxij while satisfying ∆k(x) = dk for every
node k (and x ≥ 0).

Example:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The min-cost flow problem

In this problem, we are given:

a network (N,A) with no source or sink.

A demand dk for every node (as in a supply-demand problem).

Instead of a capacity cij for every arc (i , j) ∈ A, a cost cij .

Goal: minimize
∑

(i ,j)∈A cijxij while satisfying ∆k(x) = dk for every
node k (and x ≥ 0).

Example:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The min-cost flow problem

In this problem, we are given:

a network (N,A) with no source or sink.

A demand dk for every node (as in a supply-demand problem).

Instead of a capacity cij for every arc (i , j) ∈ A, a cost cij .

Goal: minimize
∑

(i ,j)∈A cijxij while satisfying ∆k(x) = dk for every
node k (and x ≥ 0).

Example:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Plan for solving min-cost flow

Unlike max-flow problems, min-cost flow problems are commonly
solved using the simplex method. (There’s fewer constraints, so
the basis is smaller.)

To figure out how to do this, we need to know several things:

What a basic solution looks like.

How to do a pivoting step.

How to determine the reduced costs of an arc.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Plan for solving min-cost flow

Unlike max-flow problems, min-cost flow problems are commonly
solved using the simplex method. (There’s fewer constraints, so
the basis is smaller.)

To figure out how to do this, we need to know several things:

What a basic solution looks like.

How to do a pivoting step.

How to determine the reduced costs of an arc.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Plan for solving min-cost flow

Unlike max-flow problems, min-cost flow problems are commonly
solved using the simplex method. (There’s fewer constraints, so
the basis is smaller.)

To figure out how to do this, we need to know several things:

What a basic solution looks like.

How to do a pivoting step.

How to determine the reduced costs of an arc.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Plan for solving min-cost flow

Unlike max-flow problems, min-cost flow problems are commonly
solved using the simplex method. (There’s fewer constraints, so
the basis is smaller.)

To figure out how to do this, we need to know several things:

What a basic solution looks like.

How to do a pivoting step.

How to determine the reduced costs of an arc.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Number of basic variables

Our constraints are: Fx = d, where

F is a |N| × |A| matrix where xij ’s column has a 1 in row j
and a −1 in row i .

d is the vector of demands.

Normally, a basic solution would be given by x = F−1B d for some
choice of |N| variables B.

Here, one equation is redundant: assuming
∑

k∈N dk = 0, the
equations add up to 0 = 0. (If the sum is not 0, there is no
solution.)

So our basis will have |N| − 1 variables, assuming the network is
connected.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Number of basic variables

Our constraints are: Fx = d, where

F is a |N| × |A| matrix where xij ’s column has a 1 in row j
and a −1 in row i .

d is the vector of demands.

Normally, a basic solution would be given by x = F−1B d for some
choice of |N| variables B.

Here, one equation is redundant: assuming
∑

k∈N dk = 0, the
equations add up to 0 = 0. (If the sum is not 0, there is no
solution.)

So our basis will have |N| − 1 variables, assuming the network is
connected.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Number of basic variables

Our constraints are: Fx = d, where

F is a |N| × |A| matrix where xij ’s column has a 1 in row j
and a −1 in row i .

d is the vector of demands.

Normally, a basic solution would be given by x = F−1B d for some
choice of |N| variables B.

Here, one equation is redundant: assuming
∑

k∈N dk = 0, the
equations add up to 0 = 0. (If the sum is not 0, there is no
solution.)

So our basis will have |N| − 1 variables, assuming the network is
connected.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Number of basic variables

Our constraints are: Fx = d, where

F is a |N| × |A| matrix where xij ’s column has a 1 in row j
and a −1 in row i .

d is the vector of demands.

Normally, a basic solution would be given by x = F−1B d for some
choice of |N| variables B.

Here, one equation is redundant: assuming
∑

k∈N dk = 0, the
equations add up to 0 = 0. (If the sum is not 0, there is no
solution.)

So our basis will have |N| − 1 variables, assuming the network is
connected.1

1If there are two or more subnetworks with no arcs between them, we solve
the subproblems separately.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Spanning trees

Definition

A spanning tree of (N,A) is a choice of |N| − 1 arcs forming a
connected subnetwork. (For us, connectivity ignores direction.)

1

2 3

4

56

Good

1

2 3

4

56

Bad!

Claim: |N| − 1 variables form a basis exactly when their arcs make
a spanning tree.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Spanning trees

Definition

A spanning tree of (N,A) is a choice of |N| − 1 arcs forming a
connected subnetwork. (For us, connectivity ignores direction.)

1

2 3

4

56

Good

1

2 3

4

56

Bad!

Claim: |N| − 1 variables form a basis exactly when their arcs make
a spanning tree.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Spanning trees

Definition

A spanning tree of (N,A) is a choice of |N| − 1 arcs forming a
connected subnetwork. (For us, connectivity ignores direction.)

1

2 3

4

56

Good

1

2 3

4

56

Bad!

Claim: |N| − 1 variables form a basis exactly when their arcs make
a spanning tree.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Why spanning trees?

Q1. Why is being a spanning tree necessary to be a basis?

A1. If there are two pieces, then not all systems Fx = d with∑
k∈N dk = 0 have solutions. We must have the dk sum to 0 on

each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution
using only arcs in a spanning tree.

This will give us an x such that Fx = d, but not necessarily x ≥ 0.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Why spanning trees?

Q1. Why is being a spanning tree necessary to be a basis?

A1. If there are two pieces, then not all systems Fx = d with∑
k∈N dk = 0 have solutions. We must have the dk sum to 0 on

each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution
using only arcs in a spanning tree.

This will give us an x such that Fx = d, but not necessarily x ≥ 0.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Why spanning trees?

Q1. Why is being a spanning tree necessary to be a basis?

A1. If there are two pieces, then not all systems Fx = d with∑
k∈N dk = 0 have solutions. We must have the dk sum to 0 on

each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution
using only arcs in a spanning tree.

This will give us an x such that Fx = d, but not necessarily x ≥ 0.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Why spanning trees?

Q1. Why is being a spanning tree necessary to be a basis?

A1. If there are two pieces, then not all systems Fx = d with∑
k∈N dk = 0 have solutions. We must have the dk sum to 0 on

each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution
using only arcs in a spanning tree.

This will give us an x such that Fx = d, but not necessarily x ≥ 0.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Why spanning trees?

Q1. Why is being a spanning tree necessary to be a basis?

A1. If there are two pieces, then not all systems Fx = d with∑
k∈N dk = 0 have solutions. We must have the dk sum to 0 on

each piece!

Q2. Why is being a spanning tree sufficient to be a basis?

A2. We have an algorithm (next slide) to find a basic solution
using only arcs in a spanning tree.

This will give us an x such that Fx = d, but not necessarily x ≥ 0.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

Solve for x12 using node 1

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

Solve for x23 using node 2

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1

Solve for x43 using node 4

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1

2

Solve for x63 using node 3

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

From a spanning tree to a basic solution

To find a basic solution, repeat the following:

1 Pick a node k with only one arc of the spanning tree with
unknown flow in/out of k .

2 Solve for that remaining flow to make ∆k(x) = dk .

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1

2

3

Solve for x56 using node 5

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Ideas about pivoting steps

Things we want from pivoting:

We should be able to add any arc we want, and remove an
existing arc to get another spanning tree.

If we have a basic feasible solution (Fx = d, x ≥ 0) before the
pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many
new solutions.

One of those solutions will have flow xij = 0 for an existing arc
(i , j).

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Ideas about pivoting steps

Things we want from pivoting:

We should be able to add any arc we want, and remove an
existing arc to get another spanning tree.

If we have a basic feasible solution (Fx = d, x ≥ 0) before the
pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many
new solutions.

One of those solutions will have flow xij = 0 for an existing arc
(i , j).

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Ideas about pivoting steps

Things we want from pivoting:

We should be able to add any arc we want, and remove an
existing arc to get another spanning tree.

If we have a basic feasible solution (Fx = d, x ≥ 0) before the
pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many
new solutions.

One of those solutions will have flow xij = 0 for an existing arc
(i , j).

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Ideas about pivoting steps

Things we want from pivoting:

We should be able to add any arc we want, and remove an
existing arc to get another spanning tree.

If we have a basic feasible solution (Fx = d, x ≥ 0) before the
pivot, that should stay true after the pivot.

Vague idea: adding an arc to a spanning tree creates a cycle!

We can modify the flows along that cycle to get infinitely many
new solutions.

One of those solutions will have flow xij = 0 for an existing arc
(i , j).

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1

2

3

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1

2

3

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

1− δ

2 + δ

3 + δ

δ

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

0

3

4

1

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

The pivoting step algorithm

Once we’ve picked an arc (i , j) we’re adding to the basis:

1 Find the cycle formed by that arc and the spanning tree.

2 Set xij = δ. For each arc on the cycle, add δ if it has the same
direction around the cycle as (i , j), subtract δ otherwise.

3 Find the smallest δ that sets an existing arc to 0.

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

5

2

3

4

1

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Reduced costs

Q. How can we compute the reduced cost of an arc we’re adding?

A. Look at the ±δ changes and multiply them by the costs of the
arcs.

1

2 3

4

56

Total change in cost: δ× (2 + 3 + 1− 1) = 5δ, so the reduced cost
of x45 is 5.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Reduced costs

Q. How can we compute the reduced cost of an arc we’re adding?

A. Look at the ±δ changes and multiply them by the costs of the
arcs.

1

2 3

4

56

Total change in cost: δ× (2 + 3 + 1− 1) = 5δ, so the reduced cost
of x45 is 5.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Reduced costs

Q. How can we compute the reduced cost of an arc we’re adding?

A. Look at the ±δ changes and multiply them by the costs of the
arcs.

1

2 3

4

56

−δ

+δ

+δ

+δ

Total change in cost: δ× (2 + 3 + 1− 1) = 5δ, so the reduced cost
of x45 is 5.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Reduced costs

Q. How can we compute the reduced cost of an arc we’re adding?

A. Look at the ±δ changes and multiply them by the costs of the
arcs.

1

2 3

4

56

−δ × $1

+δ × $1

+δ × $3

+δ × $2

Total change in cost: δ× (2 + 3 + 1− 1) = 5δ, so the reduced cost
of x45 is 5.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Reduced costs

Q. How can we compute the reduced cost of an arc we’re adding?

A. Look at the ±δ changes and multiply them by the costs of the
arcs.

1

2 3

4

56

−δ × $1

+δ × $1

+δ × $3

+δ × $2

Total change in cost: δ× (2 + 3 + 1− 1) = 5δ, so the reduced cost
of x45 is 5.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

A two-phase method for min-cost flow

We now know how to find the min-cost flow once we have a
starting basic feasible flow. But how can we get that starting
point?

The two-phase simplex method:

1 Add artificial variables to each constraint, so that we get a
basic feasible solution using only artificial variables.

Add an artificial node a. For each node k: if dk > 0, add arc
(a, k) with xak = dk ; if dk < 0, add arc (k, a) with xka = |dk |.

2 Add an artificial objective function that tries to force out
those variables.

Set the cost to $1 for artificial arcs, $0 for original arcs.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

A two-phase method for min-cost flow

We now know how to find the min-cost flow once we have a
starting basic feasible flow. But how can we get that starting
point?

The two-phase simplex method:

1 Add artificial variables to each constraint, so that we get a
basic feasible solution using only artificial variables.

Add an artificial node a. For each node k: if dk > 0, add arc
(a, k) with xak = dk ; if dk < 0, add arc (k , a) with xka = |dk |.

2 Add an artificial objective function that tries to force out
those variables.

Set the cost to $1 for artificial arcs, $0 for original arcs.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

A two-phase method for min-cost flow

We now know how to find the min-cost flow once we have a
starting basic feasible flow. But how can we get that starting
point?

The two-phase simplex method:

1 Add artificial variables to each constraint, so that we get a
basic feasible solution using only artificial variables.

Add an artificial node a. For each node k: if dk > 0, add arc
(a, k) with xak = dk ; if dk < 0, add arc (k , a) with xka = |dk |.

2 Add an artificial objective function that tries to force out
those variables.

Set the cost to $1 for artificial arcs, $0 for original arcs.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

A two-phase method for min-cost flow

We now know how to find the min-cost flow once we have a
starting basic feasible flow. But how can we get that starting
point?

The two-phase simplex method:

1 Add artificial variables to each constraint, so that we get a
basic feasible solution using only artificial variables.

Add an artificial node a. For each node k: if dk > 0, add arc
(a, k) with xak = dk ; if dk < 0, add arc (k , a) with xka = |dk |.

2 Add an artificial objective function that tries to force out
those variables.

Set the cost to $1 for artificial arcs, $0 for original arcs.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Example of the first phase

Original min-cost flow problem:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Initial spanning tree for the phase-one problem:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

a[0]5

3 5

1

31

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Example of the first phase

Original min-cost flow problem:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

$2

$4

$1

$3

$2

$1

$3

$5

Initial spanning tree for the phase-one problem:

1[−5]

2[3] 3[5]

4[−1]

5[−3]6[1]

a[0]5

3 5

1

31

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Moving from first to second phase

In the usual simplex method, it’s typical that we’ll be able to drive
out all artificial variables.

Here:

Any spanning tree with the artificial node a in it must include
some arc in or out of a, to be connected.

We stop when there is only one arc in or out of a left in the
spanning tree.

Because we want ∆a(x) = da = 0, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we’re left with
a basic feasible solution to the original problem.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Moving from first to second phase

In the usual simplex method, it’s typical that we’ll be able to drive
out all artificial variables.

Here:

Any spanning tree with the artificial node a in it must include
some arc in or out of a, to be connected.

We stop when there is only one arc in or out of a left in the
spanning tree.

Because we want ∆a(x) = da = 0, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we’re left with
a basic feasible solution to the original problem.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Moving from first to second phase

In the usual simplex method, it’s typical that we’ll be able to drive
out all artificial variables.

Here:

Any spanning tree with the artificial node a in it must include
some arc in or out of a, to be connected.

We stop when there is only one arc in or out of a left in the
spanning tree.

Because we want ∆a(x) = da = 0, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we’re left with
a basic feasible solution to the original problem.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Moving from first to second phase

In the usual simplex method, it’s typical that we’ll be able to drive
out all artificial variables.

Here:

Any spanning tree with the artificial node a in it must include
some arc in or out of a, to be connected.

We stop when there is only one arc in or out of a left in the
spanning tree.

Because we want ∆a(x) = da = 0, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we’re left with
a basic feasible solution to the original problem.

Introduction Basic solutions Pivoting steps Finding an initial feasible solution

Moving from first to second phase

In the usual simplex method, it’s typical that we’ll be able to drive
out all artificial variables.

Here:

Any spanning tree with the artificial node a in it must include
some arc in or out of a, to be connected.

We stop when there is only one arc in or out of a left in the
spanning tree.

Because we want ∆a(x) = da = 0, that arc must have flow 0.

Once we delete the artificial node and artificial arcs, we’re left with
a basic feasible solution to the original problem.

	Introduction
	Basic solutions
	Pivoting steps
	Finding an initial feasible solution

